-
Notifications
You must be signed in to change notification settings - Fork 29k
[SPARK-40900][SQL] Reimplement frequentItems with dataframe operations
#38375
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 2 commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -17,55 +17,21 @@ | |
|
|
||
| package org.apache.spark.sql.execution.stat | ||
|
|
||
| import scala.collection.mutable.{Map => MutableMap} | ||
| import java.io.{ByteArrayInputStream, ByteArrayOutputStream, DataInputStream, DataOutputStream} | ||
|
|
||
| import scala.collection.mutable | ||
|
|
||
| import org.apache.spark.internal.Logging | ||
| import org.apache.spark.sql.{Column, DataFrame, Dataset, Row} | ||
| import org.apache.spark.sql.catalyst.plans.logical.LocalRelation | ||
| import org.apache.spark.sql.{functions, Column, DataFrame} | ||
| import org.apache.spark.sql.catalyst.InternalRow | ||
| import org.apache.spark.sql.catalyst.expressions.{Expression, ImplicitCastInputTypes, UnsafeProjection, UnsafeRow} | ||
| import org.apache.spark.sql.catalyst.expressions.aggregate.{ImperativeAggregate, TypedImperativeAggregate} | ||
| import org.apache.spark.sql.catalyst.trees.UnaryLike | ||
| import org.apache.spark.sql.catalyst.util.GenericArrayData | ||
| import org.apache.spark.sql.types._ | ||
|
|
||
| object FrequentItems extends Logging { | ||
|
|
||
| /** A helper class wrapping `MutableMap[Any, Long]` for simplicity. */ | ||
| private class FreqItemCounter(size: Int) extends Serializable { | ||
| val baseMap: MutableMap[Any, Long] = MutableMap.empty[Any, Long] | ||
| /** | ||
| * Add a new example to the counts if it exists, otherwise deduct the count | ||
| * from existing items. | ||
| */ | ||
| def add(key: Any, count: Long): this.type = { | ||
| if (baseMap.contains(key)) { | ||
| baseMap(key) += count | ||
| } else { | ||
| if (baseMap.size < size) { | ||
| baseMap += key -> count | ||
| } else { | ||
| val minCount = if (baseMap.values.isEmpty) 0 else baseMap.values.min | ||
| val remainder = count - minCount | ||
| if (remainder >= 0) { | ||
| baseMap += key -> count // something will get kicked out, so we can add this | ||
| baseMap.retain((k, v) => v > minCount) | ||
| baseMap.transform((k, v) => v - minCount) | ||
| } else { | ||
| baseMap.transform((k, v) => v - count) | ||
| } | ||
| } | ||
| } | ||
| this | ||
| } | ||
|
|
||
| /** | ||
| * Merge two maps of counts. | ||
| * @param other The map containing the counts for that partition | ||
| */ | ||
| def merge(other: FreqItemCounter): this.type = { | ||
| other.baseMap.foreach { case (k, v) => | ||
| add(k, v) | ||
| } | ||
| this | ||
| } | ||
| } | ||
|
|
||
| /** | ||
| * Finding frequent items for columns, possibly with false positives. Using the | ||
| * frequent element count algorithm described in | ||
|
|
@@ -85,42 +51,144 @@ object FrequentItems extends Logging { | |
| cols: Seq[String], | ||
| support: Double): DataFrame = { | ||
| require(support >= 1e-4 && support <= 1.0, s"Support must be in [1e-4, 1], but got $support.") | ||
| val numCols = cols.length | ||
|
|
||
| // number of max items to keep counts for | ||
| val sizeOfMap = (1 / support).toInt | ||
| val countMaps = Seq.tabulate(numCols)(i => new FreqItemCounter(sizeOfMap)) | ||
|
|
||
| val freqItems = df.select(cols.map(Column(_)) : _*).rdd.treeAggregate(countMaps)( | ||
| seqOp = (counts, row) => { | ||
| var i = 0 | ||
| while (i < numCols) { | ||
| val thisMap = counts(i) | ||
| val key = row.get(i) | ||
| thisMap.add(key, 1L) | ||
| i += 1 | ||
| } | ||
| counts | ||
| }, | ||
| combOp = (baseCounts, counts) => { | ||
| var i = 0 | ||
| while (i < numCols) { | ||
| baseCounts(i).merge(counts(i)) | ||
| i += 1 | ||
|
|
||
| val frequentItemCols = cols.map { col => | ||
| val aggExpr = new CollectFrequentItems(functions.col(col).expr, sizeOfMap) | ||
| Column(aggExpr.toAggregateExpression(isDistinct = false)).as(s"${col}_freqItems") | ||
| } | ||
|
|
||
| df.select(frequentItemCols: _*) | ||
| } | ||
| } | ||
|
|
||
| case class CollectFrequentItems( | ||
| child: Expression, | ||
| size: Int, | ||
| mutableAggBufferOffset: Int = 0, | ||
| inputAggBufferOffset: Int = 0) extends TypedImperativeAggregate[mutable.Map[Any, Long]] | ||
| with ImplicitCastInputTypes with UnaryLike[Expression] { | ||
| require(size > 0) | ||
|
|
||
| def this(child: Expression, size: Int) = this(child, size, 0, 0) | ||
|
|
||
| // Returns empty array for empty inputs | ||
| override def nullable: Boolean = false | ||
|
|
||
| override def dataType: DataType = ArrayType(child.dataType, containsNull = child.nullable) | ||
|
|
||
| override def inputTypes: Seq[AbstractDataType] = Seq(AnyDataType) | ||
|
|
||
| override def prettyName: String = "collect_frequent_items" | ||
|
|
||
| override def createAggregationBuffer(): mutable.Map[Any, Long] = | ||
| mutable.Map.empty[Any, Long] | ||
|
|
||
| private def add(map: mutable.Map[Any, Long], key: Any, count: Long): mutable.Map[Any, Long] = { | ||
| if (map.contains(key)) { | ||
| map(key) += count | ||
| } else { | ||
| if (map.size < size) { | ||
| map += key -> count | ||
| } else { | ||
| val minCount = if (map.values.isEmpty) 0 else map.values.min | ||
| val remainder = count - minCount | ||
| if (remainder >= 0) { | ||
| map += key -> count // something will get kicked out, so we can add this | ||
| map.retain((k, v) => v > minCount) | ||
| map.transform((k, v) => v - minCount) | ||
| } else { | ||
| map.transform((k, v) => v - count) | ||
| } | ||
| baseCounts | ||
| } | ||
| ) | ||
| val justItems = freqItems.map(m => m.baseMap.keys.toArray) | ||
| val resultRow = Row(justItems : _*) | ||
| } | ||
| map | ||
| } | ||
|
|
||
| override def update( | ||
| buffer: mutable.Map[Any, Long], | ||
| input: InternalRow): mutable.Map[Any, Long] = { | ||
| val key = child.eval(input) | ||
| if (key != null) { | ||
| this.add(buffer, InternalRow.copyValue(key), 1L) | ||
| } else { | ||
| this.add(buffer, key, 1L) | ||
| } | ||
| } | ||
|
|
||
| override def merge( | ||
| buffer: mutable.Map[Any, Long], | ||
| input: mutable.Map[Any, Long]): mutable.Map[Any, Long] = { | ||
| val otherIter = input.iterator | ||
| while (otherIter.hasNext) { | ||
| val (key, count) = otherIter.next | ||
| add(buffer, key, count) | ||
| } | ||
| buffer | ||
| } | ||
|
|
||
| val outputCols = cols.map { name => | ||
| val originalField = df.resolve(name) | ||
| override def eval(buffer: mutable.Map[Any, Long]): Any = | ||
| new GenericArrayData(buffer.keys.toArray) | ||
|
||
|
|
||
| // append frequent Items to the column name for easy debugging | ||
| StructField(name + "_freqItems", ArrayType(originalField.dataType, originalField.nullable)) | ||
| }.toArray | ||
| private lazy val projection = | ||
| UnsafeProjection.create(Array[DataType](child.dataType, LongType)) | ||
|
|
||
| val schema = StructType(outputCols).toAttributes | ||
| Dataset.ofRows(df.sparkSession, LocalRelation.fromExternalRows(schema, Seq(resultRow))) | ||
| override def serialize(map: mutable.Map[Any, Long]): Array[Byte] = { | ||
| val buffer = new Array[Byte](4 << 10) // 4K | ||
| val bos = new ByteArrayOutputStream() | ||
| val out = new DataOutputStream(bos) | ||
| try { | ||
|
||
| // Write pairs in counts map to byte buffer. | ||
| map.foreach { case (key, count) => | ||
| val row = InternalRow.apply(key, count) | ||
| val unsafeRow = projection.apply(row) | ||
| out.writeInt(unsafeRow.getSizeInBytes) | ||
| unsafeRow.writeToStream(out, buffer) | ||
| } | ||
| out.writeInt(-1) | ||
| out.flush() | ||
|
|
||
| bos.toByteArray | ||
| } finally { | ||
| out.close() | ||
| bos.close() | ||
| } | ||
| } | ||
|
|
||
| override def deserialize(bytes: Array[Byte]): mutable.Map[Any, Long] = { | ||
| val bis = new ByteArrayInputStream(bytes) | ||
| val ins = new DataInputStream(bis) | ||
| try { | ||
|
||
| val map = mutable.Map.empty[Any, Long] | ||
| // Read unsafeRow size and content in bytes. | ||
| var sizeOfNextRow = ins.readInt() | ||
| while (sizeOfNextRow >= 0) { | ||
| val bs = new Array[Byte](sizeOfNextRow) | ||
| ins.readFully(bs) | ||
| val row = new UnsafeRow(2) | ||
| row.pointTo(bs, sizeOfNextRow) | ||
| // Insert the pairs into counts map. | ||
| val key = row.get(0, child.dataType) | ||
| val count = row.get(1, LongType).asInstanceOf[Long] | ||
| map.update(key, count) | ||
| sizeOfNextRow = ins.readInt() | ||
| } | ||
|
|
||
| map | ||
| } finally { | ||
| ins.close() | ||
| bis.close() | ||
| } | ||
| } | ||
|
|
||
| override def withNewMutableAggBufferOffset(newMutableAggBufferOffset: Int): ImperativeAggregate = | ||
| copy(mutableAggBufferOffset = newMutableAggBufferOffset) | ||
|
|
||
| override def withNewInputAggBufferOffset(newInputAggBufferOffset: Int): ImperativeAggregate = | ||
| copy(inputAggBufferOffset = newInputAggBufferOffset) | ||
|
|
||
| override protected def withNewChildInternal(newChild: Expression): Expression = | ||
| copy(child = newChild) | ||
| } | ||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
seems we don't have any input type requirement, we don't need to extend
ImplicitCastInputTypesThere was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
good point, will update