Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
72 changes: 68 additions & 4 deletions python/pyspark/pandas/groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -806,28 +806,92 @@ def std(col: Column) -> Column:
bool_to_numeric=True,
)

def sum(self) -> FrameLike:
def sum(self, numeric_only: Optional[bool] = True, min_count: int = 0) -> FrameLike:
"""
Compute sum of group values

.. versionadded:: 3.3.0

Parameters
----------
numeric_only : bool, default False
Include only float, int, boolean columns. If None, will attempt to use
everything, then use only numeric data.
It takes no effect since only numeric columns can be support here.

.. versionadded:: 3.4.0
min_count: int, default 0
The required number of valid values to perform the operation.
If fewer than min_count non-NA values are present the result will be NA.

.. versionadded:: 3.4.0

Examples
--------
>>> df = ps.DataFrame({"A": [1, 2, 1, 2], "B": [True, False, False, True],
... "C": [3, 4, 3, 4], "D": ["a", "b", "b", "a"]})
... "C": [3, 4, 3, 4], "D": ["a", "a", "b", "a"]})

>>> df.groupby("A").sum()
>>> df.groupby("A").sum().sort_index()
B C
A
1 1 6
2 1 8

>>> df.groupby("D").sum().sort_index()
A B C
D
a 5 2 11
b 1 0 3

>>> df.groupby("D").sum(min_count=3).sort_index()
A B C
D
a 5.0 2.0 11.0
b NaN NaN NaN

Notes
-----
There is a behavior difference between pandas-on-Spark and pandas:

* when there is a non-numeric aggregation column, it will be ignored
even if `numeric_only` is False.

See Also
--------
pyspark.pandas.Series.groupby
pyspark.pandas.DataFrame.groupby
"""
if numeric_only is not None and not isinstance(numeric_only, bool):
raise TypeError("numeric_only must be None or bool")
if not isinstance(min_count, int):
raise TypeError("min_count must be integer")

if numeric_only is not None and not numeric_only:
unsupported = [
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

given a non-numeric column, for example, str type, the final result is sensitive to the order, so not easy to implement for now.
Right now, warn the users that such columns will be skiped:
PandasAPIOnSparkAdviceWarning: GroupBy.sum() can only support numeric and bool columns even ifnumeric_only=False, skip unsupported columns: ['D']

col.name
for col in self._agg_columns
if not isinstance(col.spark.data_type, (NumericType, BooleanType))
]
if len(unsupported) > 0:
log_advice(
"GroupBy.sum() can only support numeric and bool columns even if"
f"numeric_only=False, skip unsupported columns: {unsupported}"
)

if min_count > 0:

def sum(col: Column) -> Column:
return F.when(
F.count(F.when(~F.isnull(col), F.lit(0))) < min_count, F.lit(None)
).otherwise(F.sum(col))

else:

def sum(col: Column) -> Column:
return F.sum(col)

return self._reduce_for_stat_function(
F.sum, accepted_spark_types=(NumericType,), bool_to_numeric=True
sum, accepted_spark_types=(NumericType,), bool_to_numeric=True
)

# TODO: sync the doc.
Expand Down
19 changes: 19 additions & 0 deletions python/pyspark/pandas/tests/test_groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -1413,6 +1413,25 @@ def test_max(self):
self._test_stat_func(lambda groupby_obj: groupby_obj.max(numeric_only=True))
self._test_stat_func(lambda groupby_obj: groupby_obj.max(numeric_only=True, min_count=2))

def test_sum(self):
pdf = pd.DataFrame(
{
"A": ["a", "a", "b", "a"],
"B": [1, 2, 1, 2],
"C": [-1.5, np.nan, -3.2, 0.1],
}
)
psdf = ps.from_pandas(pdf)
self.assert_eq(pdf.groupby("A").sum().sort_index(), psdf.groupby("A").sum().sort_index())
self.assert_eq(
pdf.groupby("A").sum(min_count=2).sort_index(),
psdf.groupby("A").sum(min_count=2).sort_index(),
)
self.assert_eq(
pdf.groupby("A").sum(min_count=3).sort_index(),
psdf.groupby("A").sum(min_count=3).sort_index(),
)

def test_mad(self):
self._test_stat_func(lambda groupby_obj: groupby_obj.mad())

Expand Down