Skip to content
Closed
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -21,11 +21,11 @@ import java.lang.{Boolean => JBoolean, Double => JDouble, Float => JFloat, Long
import java.math.{BigDecimal => JBigDecimal}
import java.sql.{Date, Timestamp}
import java.time.{Duration, Instant, LocalDate, Period}
import java.util.HashSet
import java.util.Locale

import scala.collection.JavaConverters.asScalaBufferConverter

import org.apache.parquet.column.statistics.{Statistics => ParquetStatistics}
import org.apache.parquet.filter2.predicate._
import org.apache.parquet.filter2.predicate.SparkFilterApi._
import org.apache.parquet.io.api.Binary
Expand Down Expand Up @@ -444,94 +444,106 @@ class ParquetFilters(
}

private val makeInPredicate:
PartialFunction[ParquetSchemaType,
(Array[String], Array[Any], ParquetStatistics[_]) => FilterPredicate] = {
PartialFunction[ParquetSchemaType, (Array[String], Array[Any]) => FilterPredicate] = {

case ParquetByteType | ParquetShortType | ParquetIntegerType =>
(n: Array[String], v: Array[Any], statistics: ParquetStatistics[_]) =>
v.map(toIntValue(_).toInt).foreach(statistics.updateStats)
FilterApi.and(
FilterApi.gtEq(intColumn(n), statistics.genericGetMin().asInstanceOf[Integer]),
FilterApi.ltEq(intColumn(n), statistics.genericGetMax().asInstanceOf[Integer]))
(n: Array[String], values: Array[Any]) =>
val set = new HashSet[Integer]()
for (value <- values) {
set.add(toIntValue(value))
}
FilterApi.in(intColumn(n), set)

case ParquetLongType =>
(n: Array[String], v: Array[Any], statistics: ParquetStatistics[_]) =>
v.map(toLongValue).foreach(statistics.updateStats(_))
FilterApi.and(
FilterApi.gtEq(longColumn(n), statistics.genericGetMin().asInstanceOf[JLong]),
FilterApi.ltEq(longColumn(n), statistics.genericGetMax().asInstanceOf[JLong]))
(n: Array[String], values: Array[Any]) =>
val set = new HashSet[JLong]()
for (value <- values) {
set.add(toLongValue(value))
}
FilterApi.in(longColumn(n), set)

case ParquetFloatType =>
(n: Array[String], v: Array[Any], statistics: ParquetStatistics[_]) =>
v.map(_.asInstanceOf[JFloat]).foreach(statistics.updateStats(_))
FilterApi.and(
FilterApi.gtEq(floatColumn(n), statistics.genericGetMin().asInstanceOf[JFloat]),
FilterApi.ltEq(floatColumn(n), statistics.genericGetMax().asInstanceOf[JFloat]))
(n: Array[String], values: Array[Any]) =>
val set = new HashSet[JFloat]()
for (value <- values) {
set.add(value.asInstanceOf[JFloat])
}
FilterApi.in(floatColumn(n), set)

case ParquetDoubleType =>
(n: Array[String], v: Array[Any], statistics: ParquetStatistics[_]) =>
v.map(_.asInstanceOf[JDouble]).foreach(statistics.updateStats(_))
FilterApi.and(
FilterApi.gtEq(doubleColumn(n), statistics.genericGetMin().asInstanceOf[JDouble]),
FilterApi.ltEq(doubleColumn(n), statistics.genericGetMax().asInstanceOf[JDouble]))
(n: Array[String], values: Array[Any]) =>
val set = new HashSet[JDouble]()
for (value <- values) {
set.add(value.asInstanceOf[JDouble])
}
FilterApi.in(doubleColumn(n), set)

case ParquetStringType =>
(n: Array[String], v: Array[Any], statistics: ParquetStatistics[_]) =>
v.map(s => Binary.fromString(s.asInstanceOf[String])).foreach(statistics.updateStats)
FilterApi.and(
FilterApi.gtEq(binaryColumn(n), statistics.genericGetMin().asInstanceOf[Binary]),
FilterApi.ltEq(binaryColumn(n), statistics.genericGetMax().asInstanceOf[Binary]))
(n: Array[String], values: Array[Any]) =>
val set = new HashSet[Binary]()
for (value <- values) {
set.add(Option(value).map(s => Binary.fromString(s.asInstanceOf[String])).orNull)
}
FilterApi.in(binaryColumn(n), set)

case ParquetBinaryType =>
(n: Array[String], v: Array[Any], statistics: ParquetStatistics[_]) =>
v.map(b => Binary.fromReusedByteArray(b.asInstanceOf[Array[Byte]]))
.foreach(statistics.updateStats)
FilterApi.and(
FilterApi.gtEq(binaryColumn(n), statistics.genericGetMin().asInstanceOf[Binary]),
FilterApi.ltEq(binaryColumn(n), statistics.genericGetMax().asInstanceOf[Binary]))
(n: Array[String], values: Array[Any]) =>
val set = new HashSet[Binary]()
for (value <- values) {
set.add(Option(value)
.map(b => Binary.fromReusedByteArray(b.asInstanceOf[Array[Byte]])).orNull)
}
FilterApi.in(binaryColumn(n), set)

case ParquetDateType if pushDownDate =>
(n: Array[String], v: Array[Any], statistics: ParquetStatistics[_]) =>
v.map(dateToDays).map(_.asInstanceOf[Integer]).foreach(statistics.updateStats(_))
FilterApi.and(
FilterApi.gtEq(intColumn(n), statistics.genericGetMin().asInstanceOf[Integer]),
FilterApi.ltEq(intColumn(n), statistics.genericGetMax().asInstanceOf[Integer]))
(n: Array[String], values: Array[Any]) =>
val set = new HashSet[Integer]()
for (value <- values) {
set.add(Option(value).map(date => dateToDays(date).asInstanceOf[Integer]).orNull)
}
FilterApi.in(intColumn(n), set)

case ParquetTimestampMicrosType if pushDownTimestamp =>
(n: Array[String], v: Array[Any], statistics: ParquetStatistics[_]) =>
v.map(timestampToMicros).foreach(statistics.updateStats(_))
FilterApi.and(
FilterApi.gtEq(longColumn(n), statistics.genericGetMin().asInstanceOf[JLong]),
FilterApi.ltEq(longColumn(n), statistics.genericGetMax().asInstanceOf[JLong]))
(n: Array[String], values: Array[Any]) =>
val set = new HashSet[JLong]()
for (value <- values) {
set.add(Option(value).map(timestampToMicros).orNull)
}
FilterApi.in(longColumn(n), set)

case ParquetTimestampMillisType if pushDownTimestamp =>
(n: Array[String], v: Array[Any], statistics: ParquetStatistics[_]) =>
v.map(timestampToMillis).foreach(statistics.updateStats(_))
FilterApi.and(
FilterApi.gtEq(longColumn(n), statistics.genericGetMin().asInstanceOf[JLong]),
FilterApi.ltEq(longColumn(n), statistics.genericGetMax().asInstanceOf[JLong]))
(n: Array[String], values: Array[Any]) =>
val set = new HashSet[JLong]()
for (value <- values) {
set.add(Option(value).map(timestampToMillis).orNull)
}
FilterApi.in(longColumn(n), set)

case ParquetSchemaType(_: DecimalLogicalTypeAnnotation, INT32, _) if pushDownDecimal =>
(n: Array[String], v: Array[Any], statistics: ParquetStatistics[_]) =>
v.map(_.asInstanceOf[JBigDecimal]).map(decimalToInt32).foreach(statistics.updateStats(_))
FilterApi.and(
FilterApi.gtEq(intColumn(n), statistics.genericGetMin().asInstanceOf[Integer]),
FilterApi.ltEq(intColumn(n), statistics.genericGetMax().asInstanceOf[Integer]))
(n: Array[String], values: Array[Any]) =>
val set = new HashSet[Integer]()
for (value <- values) {
set.add(Option(value).map(d => decimalToInt32(d.asInstanceOf[JBigDecimal])).orNull)
}
FilterApi.in(intColumn(n), set)

case ParquetSchemaType(_: DecimalLogicalTypeAnnotation, INT64, _) if pushDownDecimal =>
(n: Array[String], v: Array[Any], statistics: ParquetStatistics[_]) =>
v.map(_.asInstanceOf[JBigDecimal]).map(decimalToInt64).foreach(statistics.updateStats(_))
FilterApi.and(
FilterApi.gtEq(longColumn(n), statistics.genericGetMin().asInstanceOf[JLong]),
FilterApi.ltEq(longColumn(n), statistics.genericGetMax().asInstanceOf[JLong]))
(n: Array[String], values: Array[Any]) =>
val set = new HashSet[JLong]()
for (value <- values) {
set.add(Option(value).map(d => decimalToInt64(d.asInstanceOf[JBigDecimal])).orNull)
}
FilterApi.in(longColumn(n), set)

case ParquetSchemaType(_: DecimalLogicalTypeAnnotation, FIXED_LEN_BYTE_ARRAY, length)
if pushDownDecimal =>
(path: Array[String], v: Array[Any], statistics: ParquetStatistics[_]) =>
v.map(d => decimalToByteArray(d.asInstanceOf[JBigDecimal], length))
.foreach(statistics.updateStats)
FilterApi.and(
FilterApi.gtEq(binaryColumn(path), statistics.genericGetMin().asInstanceOf[Binary]),
FilterApi.ltEq(binaryColumn(path), statistics.genericGetMax().asInstanceOf[Binary]))
if pushDownDecimal =>
(n: Array[String], values: Array[Any]) =>
val set = new HashSet[Binary]()
for (value <- values) {
set.add(Option(value)
.map(d => decimalToByteArray(d.asInstanceOf[JBigDecimal], length)).orNull)
}
FilterApi.in(binaryColumn(n), set)
}

// Returns filters that can be pushed down when reading Parquet files.
Expand Down Expand Up @@ -736,15 +748,12 @@ class ParquetFilters(
makeEq.lift(fieldType).map(_(fieldNames, v))
}.reduceLeftOption(FilterApi.or)
} else if (canPartialPushDownConjuncts) {
val primitiveType = schema.getColumnDescription(fieldNames).getPrimitiveType
val statistics: ParquetStatistics[_] = ParquetStatistics.createStats(primitiveType)
if (values.contains(null)) {
Seq(makeEq.lift(fieldType).map(_(fieldNames, null)),
makeInPredicate.lift(fieldType)
.map(_(fieldNames, values.filter(_ != null), statistics))
makeInPredicate.lift(fieldType).map(_(fieldNames, values.filter(_ != null)))
).flatten.reduceLeftOption(FilterApi.or)
} else {
makeInPredicate.lift(fieldType).map(_(fieldNames, values, statistics))
makeInPredicate.lift(fieldType).map(_(fieldNames, values))
}
} else {
None
Expand Down
Loading