Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,7 @@ import org.apache.spark.scheduler.{SparkListener, SparkListenerStageCompleted}
import org.apache.spark.sql.{DataFrame, Encoder, Row, SparkSession}
import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
import org.apache.spark.sql.functions.col
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.streaming.StreamingQueryException
import org.apache.spark.sql.types._
import org.apache.spark.storage.StorageLevel
Expand Down Expand Up @@ -220,7 +221,9 @@ class ALSSuite extends MLTest with DefaultReadWriteTest with Logging {
(1231L, 12L, 0.5),
(1112L, 21L, 1.0)
)).toDF("item", "user", "rating")
new ALS().setMaxIter(1).fit(df)
withSQLConf(SQLConf.ANSI_ENABLED.key -> "false") {
new ALS().setMaxIter(1).fit(df)
}
}

withClue("Valid Double Ids") {
Expand Down Expand Up @@ -719,40 +722,42 @@ class ALSSuite extends MLTest with DefaultReadWriteTest with Logging {
(1, 1L, 1d, 0, 0L, 0d, 5.0)
).toDF("user", "user_big", "user_small", "item", "item_big", "item_small", "rating")
val msg = "ALS only supports non-Null values"
withClue("fit should fail when ids exceed integer range. ") {
assert(intercept[Exception] {
als.fit(df.select(df("user_big").as("user"), df("item"), df("rating")))
}.getMessage.contains(msg))
assert(intercept[Exception] {
als.fit(df.select(df("user_small").as("user"), df("item"), df("rating")))
}.getMessage.contains(msg))
assert(intercept[Exception] {
als.fit(df.select(df("item_big").as("item"), df("user"), df("rating")))
}.getMessage.contains(msg))
assert(intercept[Exception] {
als.fit(df.select(df("item_small").as("item"), df("user"), df("rating")))
}.getMessage.contains(msg))
}
withClue("transform should fail when ids exceed integer range. ") {
val model = als.fit(df)
def testTransformIdExceedsIntRange[A : Encoder](dataFrame: DataFrame): Unit = {
val e1 = intercept[Exception] {
model.transform(dataFrame).collect()
}
TestUtils.assertExceptionMsg(e1, msg)
val e2 = intercept[StreamingQueryException] {
testTransformer[A](dataFrame, model, "prediction") { _ => }
withSQLConf(SQLConf.ANSI_ENABLED.key -> "false") {
withClue("fit should fail when ids exceed integer range. ") {
assert(intercept[Exception] {
als.fit(df.select(df("user_big").as("user"), df("item"), df("rating")))
}.getMessage.contains(msg))
assert(intercept[Exception] {
als.fit(df.select(df("user_small").as("user"), df("item"), df("rating")))
}.getMessage.contains(msg))
assert(intercept[Exception] {
als.fit(df.select(df("item_big").as("item"), df("user"), df("rating")))
}.getMessage.contains(msg))
assert(intercept[Exception] {
als.fit(df.select(df("item_small").as("item"), df("user"), df("rating")))
}.getMessage.contains(msg))
}
withClue("transform should fail when ids exceed integer range. ") {
val model = als.fit(df)
def testTransformIdExceedsIntRange[A : Encoder](dataFrame: DataFrame): Unit = {
val e1 = intercept[Exception] {
model.transform(dataFrame).collect()
}
TestUtils.assertExceptionMsg(e1, msg)
val e2 = intercept[StreamingQueryException] {
testTransformer[A](dataFrame, model, "prediction") { _ => }
}
TestUtils.assertExceptionMsg(e2, msg)
}
TestUtils.assertExceptionMsg(e2, msg)
testTransformIdExceedsIntRange[(Long, Int)](df.select(df("user_big").as("user"),
df("item")))
testTransformIdExceedsIntRange[(Double, Int)](df.select(df("user_small").as("user"),
df("item")))
testTransformIdExceedsIntRange[(Long, Int)](df.select(df("item_big").as("item"),
df("user")))
testTransformIdExceedsIntRange[(Double, Int)](df.select(df("item_small").as("item"),
df("user")))
}
testTransformIdExceedsIntRange[(Long, Int)](df.select(df("user_big").as("user"),
df("item")))
testTransformIdExceedsIntRange[(Double, Int)](df.select(df("user_small").as("user"),
df("item")))
testTransformIdExceedsIntRange[(Long, Int)](df.select(df("item_big").as("item"),
df("user")))
testTransformIdExceedsIntRange[(Double, Int)](df.select(df("item_small").as("item"),
df("user")))
}
}

Expand Down