[SPARK-34434][SQL] Mention DS rebase options in SparkUpgradeException
#31562
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
What changes were proposed in this pull request?
Mention the DS options introduced by #31529 and by #31489 in
SparkUpgradeException.Why are the changes needed?
To improve user experience with Spark SQL. Before the changes, the error message recommends to set SQL configs but the configs cannot help in the some situations (see the PRs for more details).
Does this PR introduce any user-facing change?
Yes. After the changes, the error message is:
org.apache.spark.SparkUpgradeException: You may get a different result due to the upgrading of Spark 3.0: reading dates before 1582-10-15 or timestamps before 1900-01-01T00:00:00Z from Parquet files can be ambiguous, as the files may be written by Spark 2.x or legacy versions of Hive, which uses a legacy hybrid calendar that is different from Spark 3.0+'s Proleptic Gregorian calendar. See more details in SPARK-31404. You can set the SQL config 'spark.sql.legacy.parquet.datetimeRebaseModeInRead' or the datasource option 'datetimeRebaseMode' to 'LEGACY' to rebase the datetime values w.r.t. the calendar difference during reading. To read the datetime values as it is, set the SQL config 'spark.sql.legacy.parquet.datetimeRebaseModeInRead' or the datasource option 'datetimeRebaseMode' to 'CORRECTED'.
How was this patch tested?
./dev/scalastyle