Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 22 additions & 0 deletions python/pyspark/sql/tests/test_pandas_map.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,12 +16,15 @@
#
import os
import sys
import shutil
import tempfile
import time
import unittest

if sys.version >= '3':
unicode = str

from pyspark.sql import Row
from pyspark.sql.functions import pandas_udf, PandasUDFType
from pyspark.testing.sqlutils import ReusedSQLTestCase, have_pandas, have_pyarrow, \
pandas_requirement_message, pyarrow_requirement_message
Expand Down Expand Up @@ -117,6 +120,25 @@ def func(iterator):
expected = df.collect()
self.assertEquals(actual, expected)

# SPARK-33277
def test_map_in_pandas_with_column_vector(self):
path = tempfile.mkdtemp()
shutil.rmtree(path)

try:
self.spark.range(0, 200000, 1, 1).write.parquet(path)

def func(iterator):
for pdf in iterator:
yield pd.DataFrame({'id': [0] * len(pdf)})

for offheap in ["true", "false"]:
with self.sql_conf({"spark.sql.columnVector.offheap.enabled": offheap}):
self.assertEquals(
self.spark.read.parquet(path).mapInPandas(func, 'id long').head(), Row(0))
finally:
shutil.rmtree(path)


if __name__ == "__main__":
from pyspark.sql.tests.test_pandas_map import *
Expand Down
19 changes: 19 additions & 0 deletions python/pyspark/sql/tests/test_pandas_udf_scalar.py
Original file line number Diff line number Diff line change
Expand Up @@ -1133,6 +1133,25 @@ def test_datasource_with_udf(self):
finally:
shutil.rmtree(path)

# SPARK-33277
def test_pandas_udf_with_column_vector(self):
path = tempfile.mkdtemp()
shutil.rmtree(path)

try:
self.spark.range(0, 200000, 1, 1).write.parquet(path)

@pandas_udf(LongType())
def udf(x):
return pd.Series([0] * len(x))

for offheap in ["true", "false"]:
with self.sql_conf({"spark.sql.columnVector.offheap.enabled": offheap}):
self.assertEquals(
self.spark.read.parquet(path).select(udf('id')).head(), Row(0))
finally:
shutil.rmtree(path)


if __name__ == "__main__":
from pyspark.sql.tests.test_pandas_udf_scalar import *
Expand Down
20 changes: 20 additions & 0 deletions python/pyspark/sql/tests/test_udf.py
Original file line number Diff line number Diff line change
Expand Up @@ -670,6 +670,26 @@ def f(*a):
r = df.select(fUdf(*df.columns))
self.assertEqual(r.first()[0], "success")

# SPARK-33277
def test_udf_with_column_vector(self):
path = tempfile.mkdtemp()
shutil.rmtree(path)

try:
self.spark.range(0, 100000, 1, 1).write.parquet(path)

def f(x):
return 0

fUdf = udf(f, LongType())

for offheap in ["true", "false"]:
with self.sql_conf({"spark.sql.columnVector.offheap.enabled": offheap}):
self.assertEquals(
self.spark.read.parquet(path).select(fUdf('id')).head(), Row(0))
finally:
shutil.rmtree(path)


class UDFInitializationTests(unittest.TestCase):
def tearDown(self):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -88,6 +88,7 @@ abstract class EvalPythonExec(udfs: Seq[PythonUDF], resultAttrs: Seq[Attribute],

inputRDD.mapPartitions { iter =>
val context = TaskContext.get()
val contextAwareIterator = new ContextAwareIterator(iter, context)

// The queue used to buffer input rows so we can drain it to
// combine input with output from Python.
Expand Down Expand Up @@ -119,7 +120,7 @@ abstract class EvalPythonExec(udfs: Seq[PythonUDF], resultAttrs: Seq[Attribute],
})

// Add rows to queue to join later with the result.
val projectedRowIter = iter.map { inputRow =>
val projectedRowIter = contextAwareIterator.map { inputRow =>
queue.add(inputRow.asInstanceOf[UnsafeRow])
projection(inputRow)
}
Expand All @@ -136,3 +137,18 @@ abstract class EvalPythonExec(udfs: Seq[PythonUDF], resultAttrs: Seq[Attribute],
}
}
}

/**
* A TaskContext aware iterator.
*
* As the Python evaluation consumes the parent iterator in a separate thread,
* it could consume more data from the parent even after the task ends and the parent is closed.
* Thus, we should use ContextAwareIterator to stop consuming after the task ends.
*/
class ContextAwareIterator[IN](iter: Iterator[IN], context: TaskContext) extends Iterator[IN] {

override def hasNext: Boolean =
!context.isCompleted() && !context.isInterrupted() && iter.hasNext

override def next(): IN = iter.next()
}
Original file line number Diff line number Diff line change
Expand Up @@ -61,16 +61,17 @@ case class MapInPandasExec(
val pythonRunnerConf = ArrowUtils.getPythonRunnerConfMap(conf)
val outputTypes = child.schema

val context = TaskContext.get()
val contextAwareIterator = new ContextAwareIterator(inputIter, context)

// Here we wrap it via another row so that Python sides understand it
// as a DataFrame.
val wrappedIter = inputIter.map(InternalRow(_))
val wrappedIter = contextAwareIterator.map(InternalRow(_))

// DO NOT use iter.grouped(). See BatchIterator.
val batchIter =
if (batchSize > 0) new BatchIterator(wrappedIter, batchSize) else Iterator(wrappedIter)

val context = TaskContext.get()

val columnarBatchIter = new ArrowPythonRunner(
chainedFunc,
PythonEvalType.SQL_MAP_PANDAS_ITER_UDF,
Expand Down