Skip to content

Conversation

@davies
Copy link
Contributor

@davies davies commented Sep 27, 2014

This patch add profiling support for PySpark, it will show the profiling results
before the driver exits, here is one example:

============================================================
Profile of RDD<id=3>
============================================================
         5146507 function calls (5146487 primitive calls) in 71.094 seconds

   Ordered by: internal time, cumulative time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
  5144576   68.331    0.000   68.331    0.000 statcounter.py:44(merge)
       20    2.735    0.137   71.071    3.554 statcounter.py:33(__init__)
       20    0.017    0.001    0.017    0.001 {cPickle.dumps}
     1024    0.003    0.000    0.003    0.000 t.py:16(<lambda>)
       20    0.001    0.000    0.001    0.000 {reduce}
       21    0.001    0.000    0.001    0.000 {cPickle.loads}
       20    0.001    0.000    0.001    0.000 copy_reg.py:95(_slotnames)
       41    0.001    0.000    0.001    0.000 serializers.py:461(read_int)
       40    0.001    0.000    0.002    0.000 serializers.py:179(_batched)
       62    0.000    0.000    0.000    0.000 {method 'read' of 'file' objects}
       20    0.000    0.000   71.072    3.554 rdd.py:863(<lambda>)
       20    0.000    0.000    0.001    0.000 serializers.py:198(load_stream)
    40/20    0.000    0.000   71.072    3.554 rdd.py:2093(pipeline_func)
       41    0.000    0.000    0.002    0.000 serializers.py:130(load_stream)
       40    0.000    0.000   71.072    1.777 rdd.py:304(func)
       20    0.000    0.000   71.094    3.555 worker.py:82(process)

Also, use can show profile result manually by sc.show_profiles() or dump it into disk
by sc.dump_profiles(path), such as

>>> sc._conf.set("spark.python.profile", "true")
>>> rdd = sc.parallelize(range(100)).map(str)
>>> rdd.count()
100
>>> sc.show_profiles()
============================================================
Profile of RDD<id=1>
============================================================
         284 function calls (276 primitive calls) in 0.001 seconds

   Ordered by: internal time, cumulative time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        4    0.000    0.000    0.000    0.000 serializers.py:198(load_stream)
        4    0.000    0.000    0.000    0.000 {reduce}
     12/4    0.000    0.000    0.001    0.000 rdd.py:2092(pipeline_func)
        4    0.000    0.000    0.000    0.000 {cPickle.loads}
        4    0.000    0.000    0.000    0.000 {cPickle.dumps}
      104    0.000    0.000    0.000    0.000 rdd.py:852(<genexpr>)
        8    0.000    0.000    0.000    0.000 serializers.py:461(read_int)
       12    0.000    0.000    0.000    0.000 rdd.py:303(func)

The profiling is disabled by default, can be enabled by "spark.python.profile=true".

Also, users can dump the results into disks automatically for future analysis, by "spark.python.profile.dump=path_to_dump"

This is bugfix of #2351 cc @JoshRosen

@AmplabJenkins
Copy link

Test FAILed.
Refer to this link for build results (access rights to CI server needed):
https://amplab.cs.berkeley.edu/jenkins//job/SparkPullRequestBuilder/20903/

@SparkQA
Copy link

SparkQA commented Sep 27, 2014

QA tests have started for PR 2556 at commit e68df5a.

  • This patch merges cleanly.

@SparkQA
Copy link

SparkQA commented Sep 27, 2014

QA tests have finished for PR 2556 at commit e68df5a.

  • This patch passes unit tests.
  • This patch merges cleanly.
  • This patch adds no public classes.

@JoshRosen
Copy link
Contributor

I've merged this. Thanks for the fix!

@asfgit asfgit closed this in c5414b6 Oct 1, 2014
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

4 participants