Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -70,7 +70,7 @@ private[csv] object CSVInferSchema {

def mergeRowTypes(first: Array[DataType], second: Array[DataType]): Array[DataType] = {
first.zipAll(second, NullType, NullType).map { case (a, b) =>
findTightestCommonType(a, b).getOrElse(NullType)
compatibleType(a, b).getOrElse(NullType)
}
}

Expand All @@ -88,7 +88,7 @@ private[csv] object CSVInferSchema {
case LongType => tryParseLong(field, options)
case _: DecimalType =>
// DecimalTypes have different precisions and scales, so we try to find the common type.
findTightestCommonType(typeSoFar, tryParseDecimal(field, options)).getOrElse(StringType)
compatibleType(typeSoFar, tryParseDecimal(field, options)).getOrElse(StringType)
case DoubleType => tryParseDouble(field, options)
case TimestampType => tryParseTimestamp(field, options)
case BooleanType => tryParseBoolean(field, options)
Expand Down Expand Up @@ -172,35 +172,27 @@ private[csv] object CSVInferSchema {
StringType
}

private val numericPrecedence: IndexedSeq[DataType] = TypeCoercion.numericPrecedence
/**
* Returns the common data type given two input data types so that the return type
* is compatible with both input data types.
*/
private def compatibleType(t1: DataType, t2: DataType): Option[DataType] = {
TypeCoercion.findTightestCommonType(t1, t2).orElse(findCompatibleTypeForCSV(t1, t2))
}

/**
* Copied from internal Spark api
* [[org.apache.spark.sql.catalyst.analysis.TypeCoercion]]
* The following pattern matching represents additional type promotion rules that
* are CSV specific.
*/
val findTightestCommonType: (DataType, DataType) => Option[DataType] = {
case (t1, t2) if t1 == t2 => Some(t1)
case (NullType, t1) => Some(t1)
case (t1, NullType) => Some(t1)
private val findCompatibleTypeForCSV: (DataType, DataType) => Option[DataType] = {
case (StringType, t2) => Some(StringType)
case (t1, StringType) => Some(StringType)

// Promote numeric types to the highest of the two and all numeric types to unlimited decimal
case (t1, t2) if Seq(t1, t2).forall(numericPrecedence.contains) =>
val index = numericPrecedence.lastIndexWhere(t => t == t1 || t == t2)
Some(numericPrecedence(index))

// These two cases below deal with when `DecimalType` is larger than `IntegralType`.
case (t1: IntegralType, t2: DecimalType) if t2.isWiderThan(t1) =>
Some(t2)
case (t1: DecimalType, t2: IntegralType) if t1.isWiderThan(t2) =>
Some(t1)

// These two cases below deal with when `IntegralType` is larger than `DecimalType`.
case (t1: IntegralType, t2: DecimalType) =>
findTightestCommonType(DecimalType.forType(t1), t2)
compatibleType(DecimalType.forType(t1), t2)
case (t1: DecimalType, t2: IntegralType) =>
findTightestCommonType(t1, DecimalType.forType(t2))
compatibleType(t1, DecimalType.forType(t2))

// Double support larger range than fixed decimal, DecimalType.Maximum should be enough
// in most case, also have better precision.
Expand All @@ -216,7 +208,6 @@ private[csv] object CSVInferSchema {
} else {
Some(DecimalType(range + scale, scale))
}

case _ => None
}
}