Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -78,8 +78,13 @@ class MatrixFactorizationModel @Since("0.8.0") (
/** Predict the rating of one user for one product. */
@Since("0.8.0")
def predict(user: Int, product: Int): Double = {
val userVector = userFeatures.lookup(user).head
val productVector = productFeatures.lookup(product).head
val userFeatureSeq = userFeatures.lookup(user)
require(userFeatureSeq.nonEmpty, s"userId: $user not found in the model")
val productFeatureSeq = productFeatures.lookup(product)
require(productFeatureSeq.nonEmpty, s"productId: $product not found in the model")

val userVector = userFeatureSeq.head
val productVector = productFeatureSeq.head
blas.ddot(rank, userVector, 1, productVector, 1)
}

Expand Down Expand Up @@ -164,9 +169,12 @@ class MatrixFactorizationModel @Since("0.8.0") (
* recommended the product is.
*/
@Since("1.1.0")
def recommendProducts(user: Int, num: Int): Array[Rating] =
MatrixFactorizationModel.recommend(userFeatures.lookup(user).head, productFeatures, num)
def recommendProducts(user: Int, num: Int): Array[Rating] = {
val userFeatureSeq = userFeatures.lookup(user)
require(userFeatureSeq.nonEmpty, s"userId: $user not found in the model")
MatrixFactorizationModel.recommend(userFeatureSeq.head, productFeatures, num)
.map(t => Rating(user, t._1, t._2))
}

/**
* Recommends users to a product. That is, this returns users who are most likely to be
Expand All @@ -181,9 +189,12 @@ class MatrixFactorizationModel @Since("0.8.0") (
* recommended the user is.
*/
@Since("1.1.0")
def recommendUsers(product: Int, num: Int): Array[Rating] =
MatrixFactorizationModel.recommend(productFeatures.lookup(product).head, userFeatures, num)
def recommendUsers(product: Int, num: Int): Array[Rating] = {
val productFeatureSeq = productFeatures.lookup(product)
require(productFeatureSeq.nonEmpty, s"productId: $product not found in the model")
MatrixFactorizationModel.recommend(productFeatureSeq.head, userFeatures, num)
.map(t => Rating(t._1, product, t._2))
}

protected override val formatVersion: String = "1.0"

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -72,6 +72,27 @@ class MatrixFactorizationModelSuite extends SparkFunSuite with MLlibTestSparkCon
}
}

test("invalid user and product") {
val model = new MatrixFactorizationModel(rank, userFeatures, prodFeatures)

intercept[IllegalArgumentException] {
// invalid user
model.predict(5, 2)
}
intercept[IllegalArgumentException] {
// invalid product
model.predict(0, 5)
}
intercept[IllegalArgumentException] {
// invalid user
model.recommendProducts(5, 2)
}
intercept[IllegalArgumentException] {
// invalid product
model.recommendUsers(5, 2)
}
}

test("batch predict API recommendProductsForUsers") {
val model = new MatrixFactorizationModel(rank, userFeatures, prodFeatures)
val topK = 10
Expand Down