-
Notifications
You must be signed in to change notification settings - Fork 29k
[SPARK-22797][PySpark] Bucketizer support multi-column #19892
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 8 commits
1646620
51d5cfa
39a888f
6f82831
248954f
76de8e6
e869e75
9f20f5c
734db50
014fb08
ad5d81d
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -317,26 +317,34 @@ class BucketedRandomProjectionLSHModel(LSHModel, JavaMLReadable, JavaMLWritable) | |
|
|
||
|
|
||
| @inherit_doc | ||
| class Bucketizer(JavaTransformer, HasInputCol, HasOutputCol, HasHandleInvalid, | ||
| JavaMLReadable, JavaMLWritable): | ||
| """ | ||
| Maps a column of continuous features to a column of feature buckets. | ||
|
|
||
| >>> values = [(0.1,), (0.4,), (1.2,), (1.5,), (float("nan"),), (float("nan"),)] | ||
| >>> df = spark.createDataFrame(values, ["values"]) | ||
| class Bucketizer(JavaTransformer, HasInputCol, HasOutputCol, HasInputCols, HasOutputCols, | ||
| HasHandleInvalid, JavaMLReadable, JavaMLWritable): | ||
| """ | ||
| Maps a column of continuous features to a column of feature buckets. Since 2.3.0, | ||
| :py:class:`Bucketizer` can map multiple columns at once by setting the :py:attr:`inputCols` | ||
| parameter. Note that when both the :py:attr:`inputCol` and :py:attr:`inputCols` parameters | ||
| are set, a log warning will be printed and only :py:attr:`inputCol` will take effect, while | ||
| :py:attr:`inputCols` will be ignored. The :py:attr:`splits` parameter is only used for single | ||
| column usage, and :py:attr:`splitsArray` is for multiple columns. | ||
|
|
||
| >>> values = [(0.1, 0.0), (0.4, 1.0), (1.2, 1.3), (1.5, float("nan")), | ||
| ... (float("nan"), 1.0), (float("nan"), 0.0)] | ||
| >>> df = spark.createDataFrame(values, ["values1", "values2"]) | ||
| >>> bucketizer = Bucketizer(splits=[-float("inf"), 0.5, 1.4, float("inf")], | ||
| ... inputCol="values", outputCol="buckets") | ||
| >>> bucketed = bucketizer.setHandleInvalid("keep").transform(df).collect() | ||
| >>> len(bucketed) | ||
| 6 | ||
| >>> bucketed[0].buckets | ||
| 0.0 | ||
| >>> bucketed[1].buckets | ||
| 0.0 | ||
| >>> bucketed[2].buckets | ||
| 1.0 | ||
| >>> bucketed[3].buckets | ||
| 2.0 | ||
| ... inputCol="values1", outputCol="buckets") | ||
| >>> bucketed = bucketizer.setHandleInvalid("keep").transform(df) | ||
|
||
| >>> bucketed.show(truncate=False) | ||
| +-------+-------+-------+ | ||
| |values1|values2|buckets| | ||
| +-------+-------+-------+ | ||
| |0.1 |0.0 |0.0 | | ||
| |0.4 |1.0 |0.0 | | ||
| |1.2 |1.3 |1.0 | | ||
| |1.5 |NaN |2.0 | | ||
| |NaN |1.0 |3.0 | | ||
| |NaN |0.0 |3.0 | | ||
| +-------+-------+-------+ | ||
| ... | ||
| >>> bucketizer.setParams(outputCol="b").transform(df).head().b | ||
| 0.0 | ||
| >>> bucketizerPath = temp_path + "/bucketizer" | ||
|
|
@@ -347,6 +355,22 @@ class Bucketizer(JavaTransformer, HasInputCol, HasOutputCol, HasHandleInvalid, | |
| >>> bucketed = bucketizer.setHandleInvalid("skip").transform(df).collect() | ||
| >>> len(bucketed) | ||
| 4 | ||
| >>> bucketizer2 = Bucketizer(splitsArray= | ||
| ... [[-float("inf"), 0.5, 1.4, float("inf")], [-float("inf"), 0.5, float("inf")]], | ||
| ... inputCols=["values1", "values2"], outputCols=["buckets1", "buckets2"]) | ||
| >>> bucketed2 = bucketizer2.setHandleInvalid("keep").transform(df) | ||
| >>> bucketed2.show(truncate=False) | ||
| +-------+-------+--------+--------+ | ||
| |values1|values2|buckets1|buckets2| | ||
| +-------+-------+--------+--------+ | ||
| |0.1 |0.0 |0.0 |0.0 | | ||
| |0.4 |1.0 |0.0 |1.0 | | ||
| |1.2 |1.3 |1.0 |1.0 | | ||
| |1.5 |NaN |2.0 |2.0 | | ||
| |NaN |1.0 |3.0 |1.0 | | ||
| |NaN |0.0 |3.0 |0.0 | | ||
| +-------+-------+--------+--------+ | ||
| ... | ||
|
|
||
| .. versionadded:: 1.4.0 | ||
| """ | ||
|
|
@@ -363,14 +387,30 @@ class Bucketizer(JavaTransformer, HasInputCol, HasOutputCol, HasHandleInvalid, | |
|
|
||
| handleInvalid = Param(Params._dummy(), "handleInvalid", "how to handle invalid entries. " + | ||
| "Options are 'skip' (filter out rows with invalid values), " + | ||
| "'error' (throw an error), or 'keep' (keep invalid values in a special " + | ||
| "additional bucket).", | ||
| "'error' (throw an error), or 'keep' (keep invalid values in a " + | ||
| "special additional bucket). Note that in the multiple column " + | ||
| "case, the invalid handling is applied to all columns. That said " + | ||
| "for 'error' it will throw an error if any invalids are found in " + | ||
| "any column, for 'skip' it will skip rows with any invalids in " + | ||
| "any columns, etc.", | ||
| typeConverter=TypeConverters.toString) | ||
|
|
||
| splitsArray = Param(Params._dummy(), "splitsArray", "The array of split points for mapping " + | ||
| "continuous features into buckets for multiple columns. For each input " + | ||
| "column, with n+1 splits, there are n buckets. A bucket defined by " + | ||
| "splits x,y holds values in the range [x,y) except the last bucket, " + | ||
| "which also includes y. The splits should be of length >= 3 and " + | ||
| "strictly increasing. Values at -inf, inf must be explicitly provided " + | ||
| "to cover all Double values; otherwise, values outside the splits " + | ||
| "specified will be treated as errors.", | ||
| typeConverter=TypeConverters.toListListFloat) | ||
|
|
||
| @keyword_only | ||
| def __init__(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error"): | ||
| def __init__(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error", | ||
| splitsArray=None, inputCols=None, outputCols=None): | ||
| """ | ||
| __init__(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error") | ||
| __init__(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error", \ | ||
| splitsArray=None, inputCols=None, outputCols=None) | ||
| """ | ||
| super(Bucketizer, self).__init__() | ||
| self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.Bucketizer", self.uid) | ||
|
|
@@ -380,9 +420,11 @@ def __init__(self, splits=None, inputCol=None, outputCol=None, handleInvalid="er | |
|
|
||
| @keyword_only | ||
| @since("1.4.0") | ||
| def setParams(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error"): | ||
| def setParams(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error", | ||
| splitsArray=None, inputCols=None, outputCols=None): | ||
| """ | ||
| setParams(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error") | ||
| setParams(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error", \ | ||
| splitsArray=None, inputCols=None, outputCols=None) | ||
| Sets params for this Bucketizer. | ||
| """ | ||
| kwargs = self._input_kwargs | ||
|
|
@@ -402,6 +444,20 @@ def getSplits(self): | |
| """ | ||
| return self.getOrDefault(self.splits) | ||
|
|
||
| @since("2.3.0") | ||
| def setSplitsArray(self, value): | ||
| """ | ||
| Sets the value of :py:attr:`splitsArray`. | ||
| """ | ||
| return self._set(splitsArray=value) | ||
|
|
||
| @since("2.3.0") | ||
| def getSplitsArray(self): | ||
| """ | ||
| Gets the array of split points or its default value. | ||
| """ | ||
| return self.getOrDefault(self.splitsArray) | ||
|
|
||
|
|
||
| @inherit_doc | ||
| class CountVectorizer(JavaEstimator, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritable): | ||
|
|
||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -134,6 +134,16 @@ def toListFloat(value): | |
| return [float(v) for v in value] | ||
| raise TypeError("Could not convert %s to list of floats" % value) | ||
|
|
||
| @staticmethod | ||
| def toListListFloat(value): | ||
|
||
| """ | ||
| Convert a value to list of list of floats, if possible. | ||
| """ | ||
| if TypeConverters._can_convert_to_list(value): | ||
| value = TypeConverters.toList(value) | ||
| return [TypeConverters.toListFloat(v) for v in value] | ||
| raise TypeError("Could not convert %s to list of list of floats" % value) | ||
|
|
||
| @staticmethod | ||
| def toListInt(value): | ||
| """ | ||
|
|
||
Uh oh!
There was an error while loading. Please reload this page.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Note: there is a work to change this behavior to throw an exception, instead of a log warning. We should change this document later.
Uh oh!
There was an error while loading. Please reload this page.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@holdenk @zhengruifeng this comment will need to be changed as per #19993 - but that has not been merged yet. I think #19993 will block 2.3 though, so we could preemptively change the doc here to match the Scala side in #19993 about throwing an exception.