Skip to content
Closed
Show file tree
Hide file tree
Changes from 8 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
106 changes: 81 additions & 25 deletions python/pyspark/ml/feature.py
Original file line number Diff line number Diff line change
Expand Up @@ -317,26 +317,34 @@ class BucketedRandomProjectionLSHModel(LSHModel, JavaMLReadable, JavaMLWritable)


@inherit_doc
class Bucketizer(JavaTransformer, HasInputCol, HasOutputCol, HasHandleInvalid,
JavaMLReadable, JavaMLWritable):
"""
Maps a column of continuous features to a column of feature buckets.

>>> values = [(0.1,), (0.4,), (1.2,), (1.5,), (float("nan"),), (float("nan"),)]
>>> df = spark.createDataFrame(values, ["values"])
class Bucketizer(JavaTransformer, HasInputCol, HasOutputCol, HasInputCols, HasOutputCols,
HasHandleInvalid, JavaMLReadable, JavaMLWritable):
"""
Maps a column of continuous features to a column of feature buckets. Since 2.3.0,
:py:class:`Bucketizer` can map multiple columns at once by setting the :py:attr:`inputCols`
parameter. Note that when both the :py:attr:`inputCol` and :py:attr:`inputCols` parameters
are set, a log warning will be printed and only :py:attr:`inputCol` will take effect, while
Copy link
Member

@viirya viirya Dec 19, 2017

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Note: there is a work to change this behavior to throw an exception, instead of a log warning. We should change this document later.

Copy link
Contributor

@MLnick MLnick Jan 22, 2018

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@holdenk @zhengruifeng this comment will need to be changed as per #19993 - but that has not been merged yet. I think #19993 will block 2.3 though, so we could preemptively change the doc here to match the Scala side in #19993 about throwing an exception.

:py:attr:`inputCols` will be ignored. The :py:attr:`splits` parameter is only used for single
column usage, and :py:attr:`splitsArray` is for multiple columns.

>>> values = [(0.1, 0.0), (0.4, 1.0), (1.2, 1.3), (1.5, float("nan")),
... (float("nan"), 1.0), (float("nan"), 0.0)]
>>> df = spark.createDataFrame(values, ["values1", "values2"])
>>> bucketizer = Bucketizer(splits=[-float("inf"), 0.5, 1.4, float("inf")],
... inputCol="values", outputCol="buckets")
>>> bucketed = bucketizer.setHandleInvalid("keep").transform(df).collect()
>>> len(bucketed)
6
>>> bucketed[0].buckets
0.0
>>> bucketed[1].buckets
0.0
>>> bucketed[2].buckets
1.0
>>> bucketed[3].buckets
2.0
... inputCol="values1", outputCol="buckets")
>>> bucketed = bucketizer.setHandleInvalid("keep").transform(df)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It may actually be neater to show only values1 and bucketed - so perhaps .transform(df.select('values1'))?

>>> bucketed.show(truncate=False)
+-------+-------+-------+
|values1|values2|buckets|
+-------+-------+-------+
|0.1 |0.0 |0.0 |
|0.4 |1.0 |0.0 |
|1.2 |1.3 |1.0 |
|1.5 |NaN |2.0 |
|NaN |1.0 |3.0 |
|NaN |0.0 |3.0 |
+-------+-------+-------+
...
>>> bucketizer.setParams(outputCol="b").transform(df).head().b
0.0
>>> bucketizerPath = temp_path + "/bucketizer"
Expand All @@ -347,6 +355,22 @@ class Bucketizer(JavaTransformer, HasInputCol, HasOutputCol, HasHandleInvalid,
>>> bucketed = bucketizer.setHandleInvalid("skip").transform(df).collect()
>>> len(bucketed)
4
>>> bucketizer2 = Bucketizer(splitsArray=
... [[-float("inf"), 0.5, 1.4, float("inf")], [-float("inf"), 0.5, float("inf")]],
... inputCols=["values1", "values2"], outputCols=["buckets1", "buckets2"])
>>> bucketed2 = bucketizer2.setHandleInvalid("keep").transform(df)
>>> bucketed2.show(truncate=False)
+-------+-------+--------+--------+
|values1|values2|buckets1|buckets2|
+-------+-------+--------+--------+
|0.1 |0.0 |0.0 |0.0 |
|0.4 |1.0 |0.0 |1.0 |
|1.2 |1.3 |1.0 |1.0 |
|1.5 |NaN |2.0 |2.0 |
|NaN |1.0 |3.0 |1.0 |
|NaN |0.0 |3.0 |0.0 |
+-------+-------+--------+--------+
...

.. versionadded:: 1.4.0
"""
Expand All @@ -363,14 +387,30 @@ class Bucketizer(JavaTransformer, HasInputCol, HasOutputCol, HasHandleInvalid,

handleInvalid = Param(Params._dummy(), "handleInvalid", "how to handle invalid entries. " +
"Options are 'skip' (filter out rows with invalid values), " +
"'error' (throw an error), or 'keep' (keep invalid values in a special " +
"additional bucket).",
"'error' (throw an error), or 'keep' (keep invalid values in a " +
"special additional bucket). Note that in the multiple column " +
"case, the invalid handling is applied to all columns. That said " +
"for 'error' it will throw an error if any invalids are found in " +
"any column, for 'skip' it will skip rows with any invalids in " +
"any columns, etc.",
typeConverter=TypeConverters.toString)

splitsArray = Param(Params._dummy(), "splitsArray", "The array of split points for mapping " +
"continuous features into buckets for multiple columns. For each input " +
"column, with n+1 splits, there are n buckets. A bucket defined by " +
"splits x,y holds values in the range [x,y) except the last bucket, " +
"which also includes y. The splits should be of length >= 3 and " +
"strictly increasing. Values at -inf, inf must be explicitly provided " +
"to cover all Double values; otherwise, values outside the splits " +
"specified will be treated as errors.",
typeConverter=TypeConverters.toListListFloat)

@keyword_only
def __init__(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error"):
def __init__(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error",
splitsArray=None, inputCols=None, outputCols=None):
"""
__init__(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error")
__init__(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error", \
splitsArray=None, inputCols=None, outputCols=None)
"""
super(Bucketizer, self).__init__()
self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.Bucketizer", self.uid)
Expand All @@ -380,9 +420,11 @@ def __init__(self, splits=None, inputCol=None, outputCol=None, handleInvalid="er

@keyword_only
@since("1.4.0")
def setParams(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error"):
def setParams(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error",
splitsArray=None, inputCols=None, outputCols=None):
"""
setParams(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error")
setParams(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error", \
splitsArray=None, inputCols=None, outputCols=None)
Sets params for this Bucketizer.
"""
kwargs = self._input_kwargs
Expand All @@ -402,6 +444,20 @@ def getSplits(self):
"""
return self.getOrDefault(self.splits)

@since("2.3.0")
def setSplitsArray(self, value):
"""
Sets the value of :py:attr:`splitsArray`.
"""
return self._set(splitsArray=value)

@since("2.3.0")
def getSplitsArray(self):
"""
Gets the array of split points or its default value.
"""
return self.getOrDefault(self.splitsArray)


@inherit_doc
class CountVectorizer(JavaEstimator, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritable):
Expand Down
10 changes: 10 additions & 0 deletions python/pyspark/ml/param/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -134,6 +134,16 @@ def toListFloat(value):
return [float(v) for v in value]
raise TypeError("Could not convert %s to list of floats" % value)

@staticmethod
def toListListFloat(value):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We need a test case in ParamTypeConversionTests for this new method; see test_list_float for reference.

"""
Convert a value to list of list of floats, if possible.
"""
if TypeConverters._can_convert_to_list(value):
value = TypeConverters.toList(value)
return [TypeConverters.toListFloat(v) for v in value]
raise TypeError("Could not convert %s to list of list of floats" % value)

@staticmethod
def toListInt(value):
"""
Expand Down
9 changes: 9 additions & 0 deletions python/pyspark/ml/tests.py
Original file line number Diff line number Diff line change
Expand Up @@ -238,6 +238,15 @@ def test_bool(self):
self.assertRaises(TypeError, lambda: LogisticRegression(fitIntercept=1))
self.assertRaises(TypeError, lambda: LogisticRegression(fitIntercept="false"))

def test_list_list_float(self):
b = Bucketizer(splitsArray=[[-0.1, 0.5, 3], [-5, 1.5]])
self.assertEqual(b.getSplitsArray(), [[-0.1, 0.5, 3.0], [-5.0, 1.5]])
self.assertTrue(all([type(v) == list for v in b.getSplitsArray()]))
self.assertTrue(all([type(v) == float for v in b.getSplitsArray()[0]]))
self.assertTrue(all([type(v) == float for v in b.getSplitsArray()[1]]))
self.assertRaises(TypeError, lambda: Bucketizer(splitsArray=["a", 1.0]))
self.assertRaises(TypeError, lambda: Bucketizer(splitsArray=[[-5, 1.5], ["a", 1.0]]))


class PipelineTests(PySparkTestCase):

Expand Down