-
Notifications
You must be signed in to change notification settings - Fork 29k
[SPARK-19634][SQL][ML][FOLLOW-UP] Improve interface of dataframe vectorized summarizer #19156
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from all commits
60394d9
6adcfa7
5b0baf5
2742cd3
6800218
647dbbe
f34da1f
24697f3
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -24,7 +24,7 @@ import org.apache.spark.internal.Logging | |
| import org.apache.spark.ml.linalg.{Vector, Vectors, VectorUDT} | ||
| import org.apache.spark.sql.Column | ||
| import org.apache.spark.sql.catalyst.InternalRow | ||
| import org.apache.spark.sql.catalyst.expressions.{Expression, UnsafeArrayData} | ||
| import org.apache.spark.sql.catalyst.expressions.{Expression, ImplicitCastInputTypes, UnsafeArrayData} | ||
| import org.apache.spark.sql.catalyst.expressions.aggregate.{AggregateExpression, Complete, TypedImperativeAggregate} | ||
| import org.apache.spark.sql.functions.lit | ||
| import org.apache.spark.sql.types._ | ||
|
|
@@ -41,7 +41,7 @@ sealed abstract class SummaryBuilder { | |
| /** | ||
| * Returns an aggregate object that contains the summary of the column with the requested metrics. | ||
| * @param featuresCol a column that contains features Vector object. | ||
| * @param weightCol a column that contains weight value. | ||
| * @param weightCol a column that contains weight value. Default weight is 1.0. | ||
| * @return an aggregate column that contains the statistics. The exact content of this | ||
| * structure is determined during the creation of the builder. | ||
| */ | ||
|
|
@@ -50,6 +50,7 @@ sealed abstract class SummaryBuilder { | |
|
|
||
| @Since("2.3.0") | ||
| def summary(featuresCol: Column): Column = summary(featuresCol, lit(1.0)) | ||
|
|
||
| } | ||
|
|
||
| /** | ||
|
|
@@ -60,15 +61,18 @@ sealed abstract class SummaryBuilder { | |
| * This class lets users pick the statistics they would like to extract for a given column. Here is | ||
| * an example in Scala: | ||
| * {{{ | ||
| * val dataframe = ... // Some dataframe containing a feature column | ||
| * val allStats = dataframe.select(Summarizer.metrics("min", "max").summary($"features")) | ||
| * val Row(Row(min_, max_)) = allStats.first() | ||
| * import org.apache.spark.ml.linalg._ | ||
| * import org.apache.spark.sql.Row | ||
| * val dataframe = ... // Some dataframe containing a feature column and a weight column | ||
| * val multiStatsDF = dataframe.select( | ||
| * Summarizer.metrics("min", "max", "count").summary($"features", $"weight") | ||
| * val Row(Row(minVec, maxVec, count)) = multiStatsDF.first() | ||
| * }}} | ||
| * | ||
| * If one wants to get a single metric, shortcuts are also available: | ||
| * {{{ | ||
| * val meanDF = dataframe.select(Summarizer.mean($"features")) | ||
| * val Row(mean_) = meanDF.first() | ||
| * val Row(meanVec) = meanDF.first() | ||
| * }}} | ||
| * | ||
| * Note: Currently, the performance of this interface is about 2x~3x slower then using the RDD | ||
|
|
@@ -94,46 +98,87 @@ object Summarizer extends Logging { | |
| * - min: the minimum for each coefficient. | ||
| * - normL2: the Euclidian norm for each coefficient. | ||
| * - normL1: the L1 norm of each coefficient (sum of the absolute values). | ||
| * @param firstMetric the metric being provided | ||
| * @param metrics additional metrics that can be provided. | ||
| * @param metrics metrics that can be provided. | ||
| * @return a builder. | ||
| * @throws IllegalArgumentException if one of the metric names is not understood. | ||
| * | ||
| * Note: Currently, the performance of this interface is about 2x~3x slower then using the RDD | ||
| * interface. | ||
| */ | ||
| @Since("2.3.0") | ||
| def metrics(firstMetric: String, metrics: String*): SummaryBuilder = { | ||
| val (typedMetrics, computeMetrics) = getRelevantMetrics(Seq(firstMetric) ++ metrics) | ||
| @scala.annotation.varargs | ||
| def metrics(metrics: String*): SummaryBuilder = { | ||
| require(metrics.size >= 1, "Should include at least one metric") | ||
| val (typedMetrics, computeMetrics) = getRelevantMetrics(metrics) | ||
| new SummaryBuilderImpl(typedMetrics, computeMetrics) | ||
| } | ||
|
|
||
| @Since("2.3.0") | ||
| def mean(col: Column): Column = getSingleMetric(col, "mean") | ||
| def mean(col: Column, weightCol: Column): Column = { | ||
| getSingleMetric(col, weightCol, "mean") | ||
| } | ||
|
|
||
| @Since("2.3.0") | ||
| def mean(col: Column): Column = mean(col, lit(1.0)) | ||
|
|
||
| @Since("2.3.0") | ||
| def variance(col: Column, weightCol: Column): Column = { | ||
| getSingleMetric(col, weightCol, "variance") | ||
| } | ||
|
|
||
| @Since("2.3.0") | ||
| def variance(col: Column): Column = variance(col, lit(1.0)) | ||
|
|
||
| @Since("2.3.0") | ||
| def count(col: Column, weightCol: Column): Column = { | ||
| getSingleMetric(col, weightCol, "count") | ||
| } | ||
|
|
||
| @Since("2.3.0") | ||
| def count(col: Column): Column = count(col, lit(1.0)) | ||
|
|
||
| @Since("2.3.0") | ||
| def variance(col: Column): Column = getSingleMetric(col, "variance") | ||
| def numNonZeros(col: Column, weightCol: Column): Column = { | ||
| getSingleMetric(col, weightCol, "numNonZeros") | ||
| } | ||
|
|
||
| @Since("2.3.0") | ||
| def numNonZeros(col: Column): Column = numNonZeros(col, lit(1.0)) | ||
|
|
||
| @Since("2.3.0") | ||
| def max(col: Column, weightCol: Column): Column = { | ||
| getSingleMetric(col, weightCol, "max") | ||
| } | ||
|
|
||
| @Since("2.3.0") | ||
| def max(col: Column): Column = max(col, lit(1.0)) | ||
|
|
||
| @Since("2.3.0") | ||
| def count(col: Column): Column = getSingleMetric(col, "count") | ||
| def min(col: Column, weightCol: Column): Column = { | ||
| getSingleMetric(col, weightCol, "min") | ||
| } | ||
|
|
||
| @Since("2.3.0") | ||
| def numNonZeros(col: Column): Column = getSingleMetric(col, "numNonZeros") | ||
| def min(col: Column): Column = min(col, lit(1.0)) | ||
|
|
||
| @Since("2.3.0") | ||
| def max(col: Column): Column = getSingleMetric(col, "max") | ||
| def normL1(col: Column, weightCol: Column): Column = { | ||
| getSingleMetric(col, weightCol, "normL1") | ||
| } | ||
|
|
||
| @Since("2.3.0") | ||
| def min(col: Column): Column = getSingleMetric(col, "min") | ||
| def normL1(col: Column): Column = normL1(col, lit(1.0)) | ||
|
|
||
| @Since("2.3.0") | ||
| def normL1(col: Column): Column = getSingleMetric(col, "normL1") | ||
| def normL2(col: Column, weightCol: Column): Column = { | ||
| getSingleMetric(col, weightCol, "normL2") | ||
| } | ||
|
|
||
| @Since("2.3.0") | ||
| def normL2(col: Column): Column = getSingleMetric(col, "normL2") | ||
| def normL2(col: Column): Column = normL2(col, lit(1.0)) | ||
|
|
||
| private def getSingleMetric(col: Column, metric: String): Column = { | ||
| val c1 = metrics(metric).summary(col) | ||
| private def getSingleMetric(col: Column, weightCol: Column, metric: String): Column = { | ||
| val c1 = metrics(metric).summary(col, weightCol) | ||
| c1.getField(metric).as(s"$metric($col)") | ||
| } | ||
| } | ||
|
|
@@ -187,8 +232,7 @@ private[ml] object SummaryBuilderImpl extends Logging { | |
| StructType(fields) | ||
| } | ||
|
|
||
| private val arrayDType = ArrayType(DoubleType, containsNull = false) | ||
| private val arrayLType = ArrayType(LongType, containsNull = false) | ||
| private val vectorUDT = new VectorUDT | ||
|
|
||
| /** | ||
| * All the metrics that can be currently computed by Spark for vectors. | ||
|
|
@@ -197,14 +241,14 @@ private[ml] object SummaryBuilderImpl extends Logging { | |
| * metrics that need to de computed internally to get the final result. | ||
| */ | ||
| private val allMetrics: Seq[(String, Metric, DataType, Seq[ComputeMetric])] = Seq( | ||
| ("mean", Mean, arrayDType, Seq(ComputeMean, ComputeWeightSum)), | ||
| ("variance", Variance, arrayDType, Seq(ComputeWeightSum, ComputeMean, ComputeM2n)), | ||
| ("mean", Mean, vectorUDT, Seq(ComputeMean, ComputeWeightSum)), | ||
| ("variance", Variance, vectorUDT, Seq(ComputeWeightSum, ComputeMean, ComputeM2n)), | ||
| ("count", Count, LongType, Seq()), | ||
| ("numNonZeros", NumNonZeros, arrayLType, Seq(ComputeNNZ)), | ||
| ("max", Max, arrayDType, Seq(ComputeMax, ComputeNNZ)), | ||
| ("min", Min, arrayDType, Seq(ComputeMin, ComputeNNZ)), | ||
| ("normL2", NormL2, arrayDType, Seq(ComputeM2)), | ||
| ("normL1", NormL1, arrayDType, Seq(ComputeL1)) | ||
| ("numNonZeros", NumNonZeros, vectorUDT, Seq(ComputeNNZ)), | ||
|
||
| ("max", Max, vectorUDT, Seq(ComputeMax, ComputeNNZ)), | ||
| ("min", Min, vectorUDT, Seq(ComputeMin, ComputeNNZ)), | ||
| ("normL2", NormL2, vectorUDT, Seq(ComputeM2)), | ||
| ("normL1", NormL1, vectorUDT, Seq(ComputeL1)) | ||
| ) | ||
|
|
||
| /** | ||
|
|
@@ -527,27 +571,28 @@ private[ml] object SummaryBuilderImpl extends Logging { | |
| weightExpr: Expression, | ||
| mutableAggBufferOffset: Int, | ||
| inputAggBufferOffset: Int) | ||
| extends TypedImperativeAggregate[SummarizerBuffer] { | ||
| extends TypedImperativeAggregate[SummarizerBuffer] with ImplicitCastInputTypes { | ||
|
|
||
| override def eval(state: SummarizerBuffer): InternalRow = { | ||
| override def eval(state: SummarizerBuffer): Any = { | ||
|
||
| val metrics = requestedMetrics.map { | ||
| case Mean => UnsafeArrayData.fromPrimitiveArray(state.mean.toArray) | ||
| case Variance => UnsafeArrayData.fromPrimitiveArray(state.variance.toArray) | ||
| case Mean => vectorUDT.serialize(state.mean) | ||
| case Variance => vectorUDT.serialize(state.variance) | ||
| case Count => state.count | ||
| case NumNonZeros => UnsafeArrayData.fromPrimitiveArray( | ||
| state.numNonzeros.toArray.map(_.toLong)) | ||
| case Max => UnsafeArrayData.fromPrimitiveArray(state.max.toArray) | ||
| case Min => UnsafeArrayData.fromPrimitiveArray(state.min.toArray) | ||
| case NormL2 => UnsafeArrayData.fromPrimitiveArray(state.normL2.toArray) | ||
| case NormL1 => UnsafeArrayData.fromPrimitiveArray(state.normL1.toArray) | ||
| case NumNonZeros => vectorUDT.serialize(state.numNonzeros) | ||
| case Max => vectorUDT.serialize(state.max) | ||
| case Min => vectorUDT.serialize(state.min) | ||
| case NormL2 => vectorUDT.serialize(state.normL2) | ||
| case NormL1 => vectorUDT.serialize(state.normL1) | ||
| } | ||
| InternalRow.apply(metrics: _*) | ||
| } | ||
|
|
||
| override def inputTypes: Seq[DataType] = vectorUDT :: DoubleType :: Nil | ||
|
|
||
| override def children: Seq[Expression] = featuresExpr :: weightExpr :: Nil | ||
|
|
||
| override def update(state: SummarizerBuffer, row: InternalRow): SummarizerBuffer = { | ||
| val features = udt.deserialize(featuresExpr.eval(row)) | ||
| val features = vectorUDT.deserialize(featuresExpr.eval(row)) | ||
| val weight = weightExpr.eval(row).asInstanceOf[Double] | ||
| state.add(features, weight) | ||
| state | ||
|
|
@@ -591,7 +636,4 @@ private[ml] object SummaryBuilderImpl extends Logging { | |
| override def prettyName: String = "aggregate_metrics" | ||
|
|
||
| } | ||
|
|
||
| private[this] val udt = new VectorUDT | ||
|
|
||
| } | ||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,64 @@ | ||
| /* | ||
| * Licensed to the Apache Software Foundation (ASF) under one or more | ||
| * contributor license agreements. See the NOTICE file distributed with | ||
| * this work for additional information regarding copyright ownership. | ||
| * The ASF licenses this file to You under the Apache License, Version 2.0 | ||
| * (the "License"); you may not use this file except in compliance with | ||
| * the License. You may obtain a copy of the License at | ||
| * | ||
| * http://www.apache.org/licenses/LICENSE-2.0 | ||
| * | ||
| * Unless required by applicable law or agreed to in writing, software | ||
| * distributed under the License is distributed on an "AS IS" BASIS, | ||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| * See the License for the specific language governing permissions and | ||
| * limitations under the License. | ||
| */ | ||
|
|
||
| package org.apache.spark.ml.stat; | ||
|
|
||
| import java.io.IOException; | ||
| import java.util.ArrayList; | ||
| import java.util.List; | ||
|
|
||
| import org.junit.Test; | ||
| import static org.junit.Assert.assertEquals; | ||
| import static org.junit.Assert.assertArrayEquals; | ||
|
|
||
| import org.apache.spark.SharedSparkSession; | ||
| import org.apache.spark.sql.Row; | ||
| import org.apache.spark.sql.Dataset; | ||
| import static org.apache.spark.sql.functions.col; | ||
| import org.apache.spark.ml.feature.LabeledPoint; | ||
| import org.apache.spark.ml.linalg.Vector; | ||
| import org.apache.spark.ml.linalg.Vectors; | ||
|
|
||
| public class JavaSummarizerSuite extends SharedSparkSession { | ||
|
|
||
| private transient Dataset<Row> dataset; | ||
|
|
||
| @Override | ||
| public void setUp() throws IOException { | ||
| super.setUp(); | ||
| List<LabeledPoint> points = new ArrayList<LabeledPoint>(); | ||
| points.add(new LabeledPoint(0.0, Vectors.dense(1.0, 2.0))); | ||
| points.add(new LabeledPoint(0.0, Vectors.dense(3.0, 4.0))); | ||
|
|
||
| dataset = spark.createDataFrame(jsc.parallelize(points, 2), LabeledPoint.class); | ||
| } | ||
|
|
||
| @Test | ||
| public void testSummarizer() { | ||
| dataset.select(col("features")); | ||
| Row result = dataset | ||
| .select(Summarizer.metrics("mean", "max", "count").summary(col("features"))) | ||
| .first().getStruct(0); | ||
| Vector meanVec = result.getAs("mean"); | ||
| Vector maxVec = result.getAs("max"); | ||
| long count = result.getAs("count"); | ||
|
|
||
| assertEquals(2L, count); | ||
| assertArrayEquals(new double[]{2.0, 3.0}, meanVec.toArray(), 0.0); | ||
| assertArrayEquals(new double[]{3.0, 4.0}, maxVec.toArray(), 0.0); | ||
| } | ||
| } |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
How about binary compatibility? e.g. spark jobs built with old spark versions, can they run on new Spark without re-compile?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This class was added after 2.2, does it matters ?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
ah then it doesn't matter