Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -54,39 +54,77 @@ private[csv] class UnivocityParser(

private val dataSchema = StructType(schema.filter(_.name != options.columnNameOfCorruptRecord))

private val valueConverters =
dataSchema.map(f => makeConverter(f.name, f.dataType, f.nullable, options)).toArray

private val tokenizer = new CsvParser(options.asParserSettings)

private var numMalformedRecords = 0

private val row = new GenericInternalRow(requiredSchema.length)

// This gets the raw input that is parsed lately.
// In `PERMISSIVE` parse mode, we should be able to put the raw malformed row into the field
// specified in `columnNameOfCorruptRecord`. The raw input is retrieved by this method.
private def getCurrentInput(): String = tokenizer.getContext.currentParsedContent().stripLineEnd

// This parser loads an `indexArr._1`-th position value in input tokens,
// then put the value in `row(indexArr._2)`.
private val indexArr: Array[(Int, Int)] = {
val fields = if (options.dropMalformed) {
// If `dropMalformed` is enabled, then it needs to parse all the values
// so that we can decide which row is malformed.
requiredSchema ++ schema.filterNot(requiredSchema.contains(_))
} else {
requiredSchema
}
// TODO: Revisit this; we need to clean up code here for readability.
// See an URL below for related discussions:
// https://github.com/apache/spark/pull/16928#discussion_r102636720
val fieldsWithIndexes = fields.zipWithIndex
corruptFieldIndex.map { case corrFieldIndex =>
fieldsWithIndexes.filter { case (_, i) => i != corrFieldIndex }
}.getOrElse {
fieldsWithIndexes
}.map { case (f, i) =>
(dataSchema.indexOf(f), i)
}.toArray
// This parser loads an `tokenIndexArr`-th position value in input tokens,
// then put the value in `row(rowIndexArr)`.
//
// For example, let's say there is CSV data as below:
//
// a,b,c
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

How about "_c0,_c1,_c2" in the header line? I couldn't first tell this is a header.

// 1,2,A
//
// Also, let's say `columnNameOfCorruptRecord` is set to "_unparsed", `header` is `true`
// by user and the user selects "c", "b", "_unparsed" and "a" fields. In this case, we need
// to map those values below:
//
// required schema - ["c", "b", "_unparsed", "a"]
// CSV data schema - ["a", "b", "c"]
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ISTM it'd be better to map the names into these variables here, reuiqredSchema and dataSchema?

// required CSV data schema - ["c", "b", "a"]
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I feel "required CSV data schema" is a little ambiguous because there is no schema variable along this name in this class. So, it seems we need to describe more?

//
// with the input tokens,
//
// input tokens - [1, 2, "A"]
//
// Each input token is placed in each output row's position by mapping these. In this case,
//
// output row - ["A", 2, null, 1]
Copy link
Member Author

@HyukjinKwon HyukjinKwon Mar 2, 2017

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

cc @cloud-fan and @maropu, could you check if this comment looks nicer to you?

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for cc'ing and brushing-up code ;) I'll check in hours

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It is just a little bit for codes.. actually :). I hope the comment makes reading this code easier and not look too verbose.

//
// In more details,
// - `valueConverters`, input tokens - CSV data schema
// `valueConverters` keeps the positions of input token indices (by its index) to each
// value's converter (by its value) in an order of CSV data schema. In this case,
// [string->int, string->int, string->string].
//
// - `tokenIndexArr`, input tokens - required CSV data schema
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ditto; tokenIndexArr is an index array in tokens corresponding to requiredSchema?

// `tokenIndexArr` keeps the positions of input token indices (by its index) to reordered
// fields given the required CSV data schema (by its value). In this case, [2, 1, 0].
//
// - `rowIndexArr`, input tokens - required schema
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ditto

// `rowIndexArr` keeps the positions of input token indices (by its index) to reordered
// field indices given the required schema (by its value). In this case, [0, 1, 3].
private val valueConverters: Array[ValueConverter] =
dataSchema.map(f => makeConverter(f.name, f.dataType, f.nullable, options)).toArray

// Only used to create both `tokenIndexArr` and `rowIndexArr`. This variable means
// the fields that we should try to convert.
private val reorderedFields = if (options.dropMalformed) {
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

requiredFields is better?

// If `dropMalformed` is enabled, then it needs to parse all the values
// so that we can decide which row is malformed.
requiredSchema ++ schema.filterNot(requiredSchema.contains(_))
} else {
requiredSchema
}

private val tokenIndexArr: Array[Int] = {
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

How about fromIndexInTokens instead of tokenIndexArr for self-describing more?
Along with his, rowIndexArr to toIndexInRow?

reorderedFields
.filter(_.name != options.columnNameOfCorruptRecord)
.map(f => dataSchema.indexOf(f)).toArray
}

private val rowIndexArr: Array[Int] = if (corruptFieldIndex.isDefined) {
val corrFieldIndex = corruptFieldIndex.get
reorderedFields.indices.filter(_ != corrFieldIndex).toArray
} else {
reorderedFields.indices.toArray
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The code below is better?

  private val rowIndexArr: Array[Int] = corruptFieldIndex.map { corrFieldIndex =>
    reorderedFields.indices.filter(_ != corrFieldIndex).toArray
  }.getOrElse {
    reorderedFields.indices.toArray
  }

}

/**
Expand Down Expand Up @@ -200,14 +238,15 @@ private[csv] class UnivocityParser(
private def convert(tokens: Array[String]): Option[InternalRow] = {
convertWithParseMode(tokens) { tokens =>
var i: Int = 0
while (i < indexArr.length) {
val (pos, rowIdx) = indexArr(i)
while (i < tokenIndexArr.length) {
// It anyway needs to try to parse since it decides if this row is malformed
// or not after trying to cast in `DROPMALFORMED` mode even if the casted
// value is not stored in the row.
val value = valueConverters(pos).apply(tokens(pos))
val from = tokenIndexArr(i)
val to = rowIndexArr(i)
val value = valueConverters(from).apply(tokens(from))
if (i < requiredSchema.length) {
row(rowIdx) = value
row(to) = value
}
i += 1
}
Expand Down