Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 20 additions & 11 deletions mllib/src/main/scala/org/apache/spark/ml/recommendation/ALS.scala
Original file line number Diff line number Diff line change
Expand Up @@ -80,14 +80,24 @@ private[recommendation] trait ALSModelParams extends Params with HasPredictionCo

/**
* Attempts to safely cast a user/item id to an Int. Throws an exception if the value is
* out of integer range.
* out of integer range or contains a fractional part.
*/
protected val checkedCast = udf { (n: Double) =>
if (n > Int.MaxValue || n < Int.MinValue) {
throw new IllegalArgumentException(s"ALS only supports values in Integer range for columns " +
s"${$(userCol)} and ${$(itemCol)}. Value $n was out of Integer range.")
} else {
n.toInt
protected[recommendation] val checkedCast = udf { (n: Any) =>
n match {
case v: Int => v // Avoid unnecessary casting
case v: Number =>
val intV = v.intValue
// Checks if number within Int range and has no fractional part.
if (v.doubleValue == intV) {
intV
} else {
throw new IllegalArgumentException(s"ALS only supports values in Integer range " +
s"and without fractional part for columns ${$(userCol)} and ${$(itemCol)}. " +
s"Value $n was either out of Integer range or contained a fractional part that " +
s"could not be converted.")
}
case _ => throw new IllegalArgumentException(s"ALS only supports values in Integer range " +
s"for columns ${$(userCol)} and ${$(itemCol)}. Value $n was not numeric.")
}
}
}
Expand Down Expand Up @@ -262,9 +272,9 @@ class ALSModel private[ml] (
}
dataset
.join(userFactors,
checkedCast(dataset($(userCol)).cast(DoubleType)) === userFactors("id"), "left")
checkedCast(dataset($(userCol))) === userFactors("id"), "left")
.join(itemFactors,
checkedCast(dataset($(itemCol)).cast(DoubleType)) === itemFactors("id"), "left")
checkedCast(dataset($(itemCol))) === itemFactors("id"), "left")
.select(dataset("*"),
predict(userFactors("features"), itemFactors("features")).as($(predictionCol)))
}
Expand Down Expand Up @@ -451,8 +461,7 @@ class ALS(@Since("1.4.0") override val uid: String) extends Estimator[ALSModel]

val r = if ($(ratingCol) != "") col($(ratingCol)).cast(FloatType) else lit(1.0f)
val ratings = dataset
.select(checkedCast(col($(userCol)).cast(DoubleType)),
checkedCast(col($(itemCol)).cast(DoubleType)), r)
.select(checkedCast(col($(userCol))), checkedCast(col($(itemCol))), r)
.rdd
.map { row =>
Rating(row.getInt(0), row.getInt(1), row.getFloat(2))
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,8 @@ import org.apache.spark.mllib.util.MLlibTestSparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.scheduler.{SparkListener, SparkListenerStageCompleted}
import org.apache.spark.sql.{DataFrame, Row, SparkSession}
import org.apache.spark.sql.types.{FloatType, IntegerType}
import org.apache.spark.sql.functions.lit
import org.apache.spark.sql.types._
import org.apache.spark.storage.StorageLevel
import org.apache.spark.util.Utils

Expand Down Expand Up @@ -205,6 +206,70 @@ class ALSSuite
assert(decompressed.toSet === expected)
}

test("CheckedCast") {
val checkedCast = new ALS().checkedCast
val df = spark.range(1)

withClue("Valid Integer Ids") {
df.select(checkedCast(lit(123))).collect()
}

withClue("Valid Long Ids") {
df.select(checkedCast(lit(1231L))).collect()
}

withClue("Valid Decimal Ids") {
df.select(checkedCast(lit(123).cast(DecimalType(15, 2)))).collect()
}

withClue("Valid Double Ids") {
df.select(checkedCast(lit(123.0))).collect()
}

val msg = "either out of Integer range or contained a fractional part"
withClue("Invalid Long: out of range") {
val e: SparkException = intercept[SparkException] {
df.select(checkedCast(lit(1231000000000L))).collect()
}
assert(e.getMessage.contains(msg))
}

withClue("Invalid Decimal: out of range") {
val e: SparkException = intercept[SparkException] {
df.select(checkedCast(lit(1231000000000.0).cast(DecimalType(15, 2)))).collect()
}
assert(e.getMessage.contains(msg))
}

withClue("Invalid Decimal: fractional part") {
val e: SparkException = intercept[SparkException] {
df.select(checkedCast(lit(123.1).cast(DecimalType(15, 2)))).collect()
}
assert(e.getMessage.contains(msg))
}

withClue("Invalid Double: out of range") {
val e: SparkException = intercept[SparkException] {
df.select(checkedCast(lit(1231000000000.0))).collect()
}
assert(e.getMessage.contains(msg))
}

withClue("Invalid Double: fractional part") {
val e: SparkException = intercept[SparkException] {
df.select(checkedCast(lit(123.1))).collect()
}
assert(e.getMessage.contains(msg))
}

withClue("Invalid Type") {
val e: SparkException = intercept[SparkException] {
df.select(checkedCast(lit("123.1"))).collect()
}
assert(e.getMessage.contains("was not numeric"))
}
}

/**
* Generates an explicit feedback dataset for testing ALS.
* @param numUsers number of users
Expand Down Expand Up @@ -510,34 +575,35 @@ class ALSSuite
(0, big, small, 0, big, small, 2.0),
(1, 1L, 1d, 0, 0L, 0d, 5.0)
).toDF("user", "user_big", "user_small", "item", "item_big", "item_small", "rating")
val msg = "either out of Integer range or contained a fractional part"
withClue("fit should fail when ids exceed integer range. ") {
assert(intercept[SparkException] {
als.fit(df.select(df("user_big").as("user"), df("item"), df("rating")))
}.getCause.getMessage.contains("was out of Integer range"))
}.getCause.getMessage.contains(msg))
assert(intercept[SparkException] {
als.fit(df.select(df("user_small").as("user"), df("item"), df("rating")))
}.getCause.getMessage.contains("was out of Integer range"))
}.getCause.getMessage.contains(msg))
assert(intercept[SparkException] {
als.fit(df.select(df("item_big").as("item"), df("user"), df("rating")))
}.getCause.getMessage.contains("was out of Integer range"))
}.getCause.getMessage.contains(msg))
assert(intercept[SparkException] {
als.fit(df.select(df("item_small").as("item"), df("user"), df("rating")))
}.getCause.getMessage.contains("was out of Integer range"))
}.getCause.getMessage.contains(msg))
}
withClue("transform should fail when ids exceed integer range. ") {
val model = als.fit(df)
assert(intercept[SparkException] {
model.transform(df.select(df("user_big").as("user"), df("item"))).first
}.getMessage.contains("was out of Integer range"))
}.getMessage.contains(msg))
assert(intercept[SparkException] {
model.transform(df.select(df("user_small").as("user"), df("item"))).first
}.getMessage.contains("was out of Integer range"))
}.getMessage.contains(msg))
assert(intercept[SparkException] {
model.transform(df.select(df("item_big").as("item"), df("user"))).first
}.getMessage.contains("was out of Integer range"))
}.getMessage.contains(msg))
assert(intercept[SparkException] {
model.transform(df.select(df("item_small").as("item"), df("user"))).first
}.getMessage.contains("was out of Integer range"))
}.getMessage.contains(msg))
}
}

Expand Down