-
Notifications
You must be signed in to change notification settings - Fork 29k
[SPARK-18476][SPARKR][ML]:SparkR Logistic Regression should should support output original label. #15910
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[SPARK-18476][SPARKR][ML]:SparkR Logistic Regression should should support output original label. #15910
Changes from 6 commits
0ff84f0
9a07aa1
9d19284
71f7de2
57cf430
de74906
b1f7b23
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -646,30 +646,30 @@ test_that("spark.isotonicRegression", { | |
|
|
||
| test_that("spark.logit", { | ||
| # test binary logistic regression | ||
| label <- c(1.0, 1.0, 1.0, 0.0, 0.0) | ||
| label <- c(0.0, 0.0, 0.0, 1.0, 1.0) | ||
| feature <- c(1.1419053, 0.9194079, -0.9498666, -1.1069903, 0.2809776) | ||
| binary_data <- as.data.frame(cbind(label, feature)) | ||
| binary_df <- createDataFrame(binary_data) | ||
|
|
||
| blr_model <- spark.logit(binary_df, label ~ feature, thresholds = 1.0) | ||
| blr_predict <- collect(select(predict(blr_model, binary_df), "prediction")) | ||
| expect_equal(blr_predict$prediction, c(0, 0, 0, 0, 0)) | ||
| expect_equal(blr_predict$prediction, c("0.0", "0.0", "0.0", "0.0", "0.0")) | ||
| blr_model1 <- spark.logit(binary_df, label ~ feature, thresholds = 0.0) | ||
| blr_predict1 <- collect(select(predict(blr_model1, binary_df), "prediction")) | ||
| expect_equal(blr_predict1$prediction, c(1, 1, 1, 1, 1)) | ||
| expect_equal(blr_predict1$prediction, c("1.0", "1.0", "1.0", "1.0", "1.0")) | ||
|
|
||
| # test summary of binary logistic regression | ||
| blr_summary <- summary(blr_model) | ||
| blr_fmeasure <- collect(select(blr_summary$fMeasureByThreshold, "threshold", "F-Measure")) | ||
| expect_equal(blr_fmeasure$threshold, c(0.8221347, 0.7884005, 0.6674709, 0.3785437, 0.3434487), | ||
| expect_equal(blr_fmeasure$threshold, c(0.6565513, 0.6214563, 0.3325291, 0.2115995, 0.1778653), | ||
| tolerance = 1e-4) | ||
| expect_equal(blr_fmeasure$"F-Measure", c(0.5000000, 0.8000000, 0.6666667, 0.8571429, 0.7500000), | ||
| expect_equal(blr_fmeasure$"F-Measure", c(0.6666667, 0.5000000, 0.8000000, 0.6666667, 0.5714286), | ||
| tolerance = 1e-4) | ||
| blr_precision <- collect(select(blr_summary$precisionByThreshold, "threshold", "precision")) | ||
| expect_equal(blr_precision$precision, c(1.0000000, 1.0000000, 0.6666667, 0.7500000, 0.6000000), | ||
| expect_equal(blr_precision$precision, c(1.0000000, 0.5000000, 0.6666667, 0.5000000, 0.4000000), | ||
| tolerance = 1e-4) | ||
| blr_recall <- collect(select(blr_summary$recallByThreshold, "threshold", "recall")) | ||
| expect_equal(blr_recall$recall, c(0.3333333, 0.6666667, 0.6666667, 1.0000000, 1.0000000), | ||
| expect_equal(blr_recall$recall, c(0.5000000, 0.5000000, 1.0000000, 1.0000000, 1.0000000), | ||
| tolerance = 1e-4) | ||
|
|
||
| # test model save and read | ||
|
|
@@ -683,6 +683,16 @@ test_that("spark.logit", { | |
| expect_error(summary(blr_model2)) | ||
| unlink(modelPath) | ||
|
|
||
| # test prediction label as text | ||
| training <- suppressWarnings(createDataFrame(iris)) | ||
| binomial_training <- training[training$Species %in% c("versicolor", "virginica"), ] | ||
| binomial_model <- spark.logit(binomial_training, Species ~ Sepal_Length + Sepal_Width) | ||
| prediction <- predict(binomial_model, binomial_training) | ||
| expect_equal(typeof(take(select(prediction, "prediction"), 1)$prediction), "character") | ||
| expected <- c("virginica", "virginica", "virginica", "versicolor", "virginica", | ||
| "versicolor", "virginica", "versicolor", "virginica", "versicolor") | ||
| expect_equal(as.list(take(select(prediction, "prediction"), 10))[[1]], expected) | ||
|
||
|
|
||
| # test multinomial logistic regression | ||
| label <- c(0.0, 1.0, 2.0, 0.0, 0.0) | ||
| feature1 <- c(4.845940, 5.64480, 7.430381, 6.464263, 5.555667) | ||
|
|
@@ -694,7 +704,7 @@ test_that("spark.logit", { | |
|
|
||
| model <- spark.logit(df, label ~., family = "multinomial", thresholds = c(0, 1, 1)) | ||
| predict1 <- collect(select(predict(model, df), "prediction")) | ||
| expect_equal(predict1$prediction, c(0, 0, 0, 0, 0)) | ||
| expect_equal(predict1$prediction, c("0.0", "0.0", "0.0", "0.0", "0.0")) | ||
| # Summary of multinomial logistic regression is not implemented yet | ||
| expect_error(summary(model)) | ||
| }) | ||
|
|
||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -19,7 +19,7 @@ package org.apache.spark | |
|
|
||
| import java.io._ | ||
| import java.lang.reflect.Constructor | ||
| import java.net.{MalformedURLException, URI} | ||
| import java.net.{URI} | ||
|
||
| import java.util.{Arrays, Locale, Properties, ServiceLoader, UUID} | ||
| import java.util.concurrent.{ConcurrentHashMap, ConcurrentMap} | ||
| import java.util.concurrent.atomic.{AtomicBoolean, AtomicInteger, AtomicReference} | ||
|
|
||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -23,9 +23,9 @@ import org.json4s.JsonDSL._ | |
| import org.json4s.jackson.JsonMethods._ | ||
|
|
||
| import org.apache.spark.ml.{Pipeline, PipelineModel} | ||
| import org.apache.spark.ml.attribute.AttributeGroup | ||
| import org.apache.spark.ml.classification.{BinaryLogisticRegressionSummary, LogisticRegression, LogisticRegressionModel} | ||
| import org.apache.spark.ml.feature.RFormula | ||
| import org.apache.spark.ml.feature.{IndexToString, RFormula} | ||
| import org.apache.spark.ml.r.RWrapperUtils._ | ||
| import org.apache.spark.ml.util._ | ||
| import org.apache.spark.sql.{DataFrame, Dataset} | ||
|
|
||
|
|
@@ -34,6 +34,8 @@ private[r] class LogisticRegressionWrapper private ( | |
| val features: Array[String], | ||
| val isLoaded: Boolean = false) extends MLWritable { | ||
|
|
||
| import LogisticRegressionWrapper._ | ||
|
|
||
| private val logisticRegressionModel: LogisticRegressionModel = | ||
| pipeline.stages(1).asInstanceOf[LogisticRegressionModel] | ||
|
|
||
|
|
@@ -57,7 +59,11 @@ private[r] class LogisticRegressionWrapper private ( | |
| lazy val recallByThreshold: DataFrame = blrSummary.recallByThreshold | ||
|
|
||
| def transform(dataset: Dataset[_]): DataFrame = { | ||
| pipeline.transform(dataset).drop(logisticRegressionModel.getFeaturesCol) | ||
| pipeline.transform(dataset) | ||
| .drop(PREDICTED_LABEL_INDEX_COL) | ||
| .drop(logisticRegressionModel.getFeaturesCol) | ||
| .drop(logisticRegressionModel.getLabelCol) | ||
|
|
||
| } | ||
|
|
||
| override def write: MLWriter = new LogisticRegressionWrapper.LogisticRegressionWrapperWriter(this) | ||
|
|
@@ -66,14 +72,16 @@ private[r] class LogisticRegressionWrapper private ( | |
| private[r] object LogisticRegressionWrapper | ||
| extends MLReadable[LogisticRegressionWrapper] { | ||
|
|
||
| val PREDICTED_LABEL_INDEX_COL = "pred_label_idx" | ||
| val PREDICTED_LABEL_COL = "prediction" | ||
|
|
||
| def fit( // scalastyle:ignore | ||
| data: DataFrame, | ||
| formula: String, | ||
| regParam: Double, | ||
| elasticNetParam: Double, | ||
| maxIter: Int, | ||
| tol: Double, | ||
| fitIntercept: Boolean, | ||
| family: String, | ||
| standardization: Boolean, | ||
| thresholds: Array[Double], | ||
|
|
@@ -84,14 +92,14 @@ private[r] object LogisticRegressionWrapper | |
|
|
||
| val rFormula = new RFormula() | ||
| .setFormula(formula) | ||
| RWrapperUtils.checkDataColumns(rFormula, data) | ||
| .setForceIndexLabel(true) | ||
| checkDataColumns(rFormula, data) | ||
| val rFormulaModel = rFormula.fit(data) | ||
|
|
||
| // get feature names from output schema | ||
| val schema = rFormulaModel.transform(data).schema | ||
| val featureAttrs = AttributeGroup.fromStructField(schema(rFormulaModel.getFeaturesCol)) | ||
| .attributes.get | ||
| val features = featureAttrs.map(_.name.get) | ||
| val fitIntercept = rFormula.hasIntercept | ||
|
|
||
| // get labels and feature names from output schema | ||
| val (features, labels) = getFeaturesAndLabels(rFormulaModel, data) | ||
|
|
||
| // assemble and fit the pipeline | ||
| val logisticRegression = new LogisticRegression() | ||
|
||
|
|
@@ -105,16 +113,23 @@ private[r] object LogisticRegressionWrapper | |
| .setWeightCol(weightCol) | ||
| .setAggregationDepth(aggregationDepth) | ||
| .setFeaturesCol(rFormula.getFeaturesCol) | ||
| .setLabelCol(rFormula.getLabelCol) | ||
| .setProbabilityCol(probability) | ||
| .setPredictionCol(PREDICTED_LABEL_INDEX_COL) | ||
|
|
||
| if (thresholds.length > 1) { | ||
| logisticRegression.setThresholds(thresholds) | ||
| } else { | ||
| logisticRegression.setThreshold(thresholds(0)) | ||
| } | ||
|
|
||
| val idxToStr = new IndexToString() | ||
| .setInputCol(PREDICTED_LABEL_INDEX_COL) | ||
| .setOutputCol(PREDICTED_LABEL_COL) | ||
| .setLabels(labels) | ||
|
|
||
| val pipeline = new Pipeline() | ||
| .setStages(Array(rFormulaModel, logisticRegression)) | ||
| .setStages(Array(rFormulaModel, logisticRegression, idxToStr)) | ||
| .fit(data) | ||
|
|
||
| new LogisticRegressionWrapper(pipeline, features) | ||
|
|
||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Nit: Actually you should not change it, usually the whole feature column were called as
features.