Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions python/pyspark/ml/classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -520,7 +520,7 @@ class GBTClassifier(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredictionCol
>>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed")
>>> si_model = stringIndexer.fit(df)
>>> td = si_model.transform(df)
>>> gbt = GBTClassifier(maxIter=5, maxDepth=2, labelCol="indexed")
>>> gbt = GBTClassifier(maxIter=5, maxDepth=2, labelCol="indexed", seed=42)
>>> model = gbt.fit(td)
>>> allclose(model.treeWeights, [1.0, 0.1, 0.1, 0.1, 0.1])
True
Expand All @@ -543,19 +543,19 @@ class GBTClassifier(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredictionCol
def __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction",
maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, lossType="logistic",
maxIter=20, stepSize=0.1):
maxIter=20, stepSize=0.1, seed=None):
"""
__init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, \
lossType="logistic", maxIter=20, stepSize=0.1)
lossType="logistic", maxIter=20, stepSize=0.1, seed=None)
"""
super(GBTClassifier, self).__init__()
self._java_obj = self._new_java_obj(
"org.apache.spark.ml.classification.GBTClassifier", self.uid)
self._setDefault(maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10,
lossType="logistic", maxIter=20, stepSize=0.1)
lossType="logistic", maxIter=20, stepSize=0.1, seed=None)
kwargs = self.__init__._input_kwargs
self.setParams(**kwargs)

Expand All @@ -564,12 +564,12 @@ def __init__(self, featuresCol="features", labelCol="label", predictionCol="pred
def setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction",
maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10,
lossType="logistic", maxIter=20, stepSize=0.1):
lossType="logistic", maxIter=20, stepSize=0.1, seed=None):
"""
setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, \
lossType="logistic", maxIter=20, stepSize=0.1)
lossType="logistic", maxIter=20, stepSize=0.1, seed=None)
Sets params for Gradient Boosted Tree Classification.
"""
kwargs = self.setParams._input_kwargs
Expand Down
13 changes: 7 additions & 6 deletions python/pyspark/ml/regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -641,7 +641,7 @@ class GBTRegressor(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredictionCol,
>>> df = sqlContext.createDataFrame([
... (1.0, Vectors.dense(1.0)),
... (0.0, Vectors.sparse(1, [], []))], ["label", "features"])
>>> gbt = GBTRegressor(maxIter=5, maxDepth=2)
>>> gbt = GBTRegressor(maxIter=5, maxDepth=2, seed=42)
>>> model = gbt.fit(df)
>>> allclose(model.treeWeights, [1.0, 0.1, 0.1, 0.1, 0.1])
True
Expand All @@ -664,18 +664,19 @@ class GBTRegressor(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredictionCol,
def __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction",
maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
maxMemoryInMB=256, cacheNodeIds=False, subsamplingRate=1.0,
checkpointInterval=10, lossType="squared", maxIter=20, stepSize=0.1):
checkpointInterval=10, lossType="squared", maxIter=20, stepSize=0.1, seed=None):
"""
__init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
maxMemoryInMB=256, cacheNodeIds=False, subsamplingRate=1.0, \
checkpointInterval=10, lossType="squared", maxIter=20, stepSize=0.1)
checkpointInterval=10, lossType="squared", maxIter=20, stepSize=0.1, seed=None)
"""
super(GBTRegressor, self).__init__()
self._java_obj = self._new_java_obj("org.apache.spark.ml.regression.GBTRegressor", self.uid)
self._setDefault(maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
maxMemoryInMB=256, cacheNodeIds=False, subsamplingRate=1.0,
checkpointInterval=10, lossType="squared", maxIter=20, stepSize=0.1)
checkpointInterval=10, lossType="squared", maxIter=20, stepSize=0.1,
seed=None)
kwargs = self.__init__._input_kwargs
self.setParams(**kwargs)

Expand All @@ -684,12 +685,12 @@ def __init__(self, featuresCol="features", labelCol="label", predictionCol="pred
def setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction",
maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
maxMemoryInMB=256, cacheNodeIds=False, subsamplingRate=1.0,
checkpointInterval=10, lossType="squared", maxIter=20, stepSize=0.1):
checkpointInterval=10, lossType="squared", maxIter=20, stepSize=0.1, seed=None):
"""
setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
maxMemoryInMB=256, cacheNodeIds=False, subsamplingRate=1.0, \
checkpointInterval=10, lossType="squared", maxIter=20, stepSize=0.1)
checkpointInterval=10, lossType="squared", maxIter=20, stepSize=0.1, seed=None)
Sets params for Gradient Boosted Tree Regression.
"""
kwargs = self.setParams._input_kwargs
Expand Down