Skip to content

Commit 5ff72ff

Browse files
animenonHyukjinKwon
authored andcommitted
[SPARK-23566][MINOR][DOC] Argument name mismatch fixed
Argument name mismatch fixed. ## What changes were proposed in this pull request? `col` changed to `new` in doc string to match the argument list. Patch file added: https://issues.apache.org/jira/browse/SPARK-23566 Please review http://spark.apache.org/contributing.html before opening a pull request. Author: Anirudh <[email protected]> Closes #20716 from animenon/master.
1 parent 42cf48e commit 5ff72ff

File tree

1 file changed

+13
-7
lines changed

1 file changed

+13
-7
lines changed

python/pyspark/sql/dataframe.py

Lines changed: 13 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -588,6 +588,8 @@ def coalesce(self, numPartitions):
588588
"""
589589
Returns a new :class:`DataFrame` that has exactly `numPartitions` partitions.
590590
591+
:param numPartitions: int, to specify the target number of partitions
592+
591593
Similar to coalesce defined on an :class:`RDD`, this operation results in a
592594
narrow dependency, e.g. if you go from 1000 partitions to 100 partitions,
593595
there will not be a shuffle, instead each of the 100 new partitions will
@@ -612,9 +614,10 @@ def repartition(self, numPartitions, *cols):
612614
Returns a new :class:`DataFrame` partitioned by the given partitioning expressions. The
613615
resulting DataFrame is hash partitioned.
614616
615-
``numPartitions`` can be an int to specify the target number of partitions or a Column.
616-
If it is a Column, it will be used as the first partitioning column. If not specified,
617-
the default number of partitions is used.
617+
:param numPartitions:
618+
can be an int to specify the target number of partitions or a Column.
619+
If it is a Column, it will be used as the first partitioning column. If not specified,
620+
the default number of partitions is used.
618621
619622
.. versionchanged:: 1.6
620623
Added optional arguments to specify the partitioning columns. Also made numPartitions
@@ -673,9 +676,10 @@ def repartitionByRange(self, numPartitions, *cols):
673676
Returns a new :class:`DataFrame` partitioned by the given partitioning expressions. The
674677
resulting DataFrame is range partitioned.
675678
676-
``numPartitions`` can be an int to specify the target number of partitions or a Column.
677-
If it is a Column, it will be used as the first partitioning column. If not specified,
678-
the default number of partitions is used.
679+
:param numPartitions:
680+
can be an int to specify the target number of partitions or a Column.
681+
If it is a Column, it will be used as the first partitioning column. If not specified,
682+
the default number of partitions is used.
679683
680684
At least one partition-by expression must be specified.
681685
When no explicit sort order is specified, "ascending nulls first" is assumed.
@@ -892,6 +896,8 @@ def colRegex(self, colName):
892896
def alias(self, alias):
893897
"""Returns a new :class:`DataFrame` with an alias set.
894898
899+
:param alias: string, an alias name to be set for the DataFrame.
900+
895901
>>> from pyspark.sql.functions import *
896902
>>> df_as1 = df.alias("df_as1")
897903
>>> df_as2 = df.alias("df_as2")
@@ -1900,7 +1906,7 @@ def withColumnRenamed(self, existing, new):
19001906
This is a no-op if schema doesn't contain the given column name.
19011907
19021908
:param existing: string, name of the existing column to rename.
1903-
:param col: string, new name of the column.
1909+
:param new: string, new name of the column.
19041910
19051911
>>> df.withColumnRenamed('age', 'age2').collect()
19061912
[Row(age2=2, name=u'Alice'), Row(age2=5, name=u'Bob')]

0 commit comments

Comments
 (0)