Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[v1.x] ONNX Supoort for MXNet _contrib_BilinearResize2D op #19733

Merged
merged 5 commits into from
Jan 10, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
57 changes: 57 additions & 0 deletions python/mxnet/contrib/onnx/mx2onnx/_op_translations.py
Original file line number Diff line number Diff line change
Expand Up @@ -2698,6 +2698,63 @@ def convert_arange_like(node, **kwargs):

return nodes


@mx_op.register("_contrib_BilinearResize2D")
def convert_contrib_BilinearResize2D(node, **kwargs):
"""Map MXNet's contrib_BilinearResize2D operator attributes to onnx.
"""
from onnx.helper import make_node
from onnx import TensorProto
name, input_nodes, attrs = get_inputs(node, kwargs)

opset_version = kwargs['opset_version']
if opset_version < 11:
raise AttributeError("ONNX opset 11 or greater is required to export this operator")

height = int(attrs.get('height', 0))
width = int(attrs.get('width', 0))

scale_height = float(attrs.get('scale_height', 0))
scale_width = float(attrs.get('scale_width', 0))

if height * width == 0 and scale_height * scale_width == 0:
raise AttributeError('height, width or scale_height, scale_width cannot be 0')

mode = attrs.get('mode', 'size')
if mode != 'size':
raise NotImplementedError('contrib_BilinearResize2D with mode other than "size" is \
not supported')

nodes = [
create_tensor([], name+'_roi', kwargs['initializer'], dtype='float32'),
]

if scale_height == 0:
nodes += [
create_tensor([0], name+'_0', kwargs['initializer']),
create_tensor([2], name+'_2', kwargs['initializer']),
create_tensor([height, width], name+'_h_w', kwargs['initializer'], dtype='int64'),
make_node('Shape', [input_nodes[0]], [name+'_shape']),
make_node('Slice', [name+'_shape', name+'_0', name+'_2'], [name+'_shape_01']),
make_node('Concat', [name+'_shape_01', name+'_h_w'], [name+'_new_shape'], axis=0),
make_node('Cast', [name+'_shape'], [name+'_shape_f'], to=int(TensorProto.FLOAT)),
make_node('Cast', [name+'_new_shape'], [name+'_new_shape_f'],
to=int(TensorProto.FLOAT)),
make_node('Div', [name+'_new_shape_f', name+'_shape_f'], [name+'_scales']),
make_node('Resize', [input_nodes[0], name+'_roi', name+'_scales'], [name],
mode='linear', coordinate_transformation_mode='align_corners', name=name)
]
else:
nodes += [
create_tensor([1, 1, scale_height, scale_width], name+'_scales', kwargs['initializer'],
dtype='float32'),
make_node('Resize', [input_nodes[0], name+'_roi', name+'_scales'], [name],
mode='linear', coordinate_transformation_mode='align_corners', name=name)
]

return nodes


@mx_op.register("_arange")
def convert_arange(node, **kwargs):
"""Map MXNet's arange operator attributes to onnx's Range operator.
Expand Down
19 changes: 19 additions & 0 deletions tests/python-pytest/onnx/test_operators.py
Original file line number Diff line number Diff line change
Expand Up @@ -351,3 +351,22 @@ def test_onnx_export_softmax(tmp_path, dtype):
M4 = def_model('softmax', use_length=True, axis=1)
l4 = mx.nd.array([[2,0,3,1],[0,1,0,0]], dtype=int)
op_export_test('softmax_4', M4, [x, l4], tmp_path)


@pytest.mark.parametrize('dtype', ['float16', 'float32', 'float64', 'int32', 'int64'])
@pytest.mark.parametrize('params', [{'height': 7, 'width': 13},
{'height': 10, 'width': 16},
{'height': 3, 'width': 5},
{'height': 2, 'width': 4},
{'scale_height': 3, 'scale_width': 2},
{'scale_height': 1.7, 'scale_width': 2.3},
{'scale_height': 0.5, 'scale_width': 0.6},
{'scale_height': 0.8, 'scale_width': 0.1},
{'scale_height': 2.5, 'scale_width': 0.5},
{'scale_height': 3, 'scale_width': 0.00001},
])
def test_onnx_export_contrib_BilinearResize2D(tmp_path, dtype, params):
x = mx.nd.arange(0, 160).reshape((2, 2, 5, 8))
M = def_model('contrib.BilinearResize2D', **params)
op_export_test('contrib_BilinearResize2D', M, [x], tmp_path)