Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[NumPy] enable large tensor in np #18368

Merged
merged 3 commits into from
Jul 20, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
104 changes: 87 additions & 17 deletions python/mxnet/numpy/multiarray.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,8 +40,9 @@
get_oshape_of_gather_nd_op
from ..ndarray._internal import _set_np_ndarray_class
from . import _op as _mx_np_op
from ..base import check_call, _LIB, NDArrayHandle, c_array
from ..base import check_call, _LIB, NDArrayHandle, c_array, mx_int, mx_int64
szha marked this conversation as resolved.
Show resolved Hide resolved
from ..base import mx_real_t, c_array_buf, mx_uint, numeric_types, integer_types
from ..runtime import Features
from ..context import Context
from ..util import set_module, wrap_np_unary_func, wrap_np_binary_func,\
is_np_default_dtype
Expand Down Expand Up @@ -92,6 +93,16 @@
_NDARRAY_NO_ZERO_DIM_BOOL_ARRAY = -1
_NDARRAY_ZERO_DIM_BOOL_ARRAY_FALSE = 0
_NDARRAY_ZERO_DIM_BOOL_ARRAY_TRUE = 1
_SIGNED_INT32_UPPER_LIMIT = (2**31 - 1)
szha marked this conversation as resolved.
Show resolved Hide resolved

# Caching whether MXNet was built with INT64 support or not
_INT64_TENSOR_SIZE_ENABLED = None

def _int64_enabled():
global _INT64_TENSOR_SIZE_ENABLED
if _INT64_TENSOR_SIZE_ENABLED is None:
_INT64_TENSOR_SIZE_ENABLED = Features().is_enabled('INT64_TENSOR_SIZE')
return _INT64_TENSOR_SIZE_ENABLED
szha marked this conversation as resolved.
Show resolved Hide resolved

# This function is copied from ndarray.py since pylint
# keeps giving false alarm error of undefined-all-variable
Expand All @@ -106,14 +117,37 @@ def _new_alloc_handle(shape, ctx, delay_alloc, dtype=mx_real_t): # pylint: disa
A new empty `ndarray` handle.
"""
hdl = NDArrayHandle()
check_call(_LIB.MXNDArrayCreateEx(
c_array_buf(mx_uint, native_array('I', shape)),
mx_uint(len(shape)),
ctypes.c_int(ctx.device_typeid),
ctypes.c_int(ctx.device_id),
ctypes.c_int(int(delay_alloc)),
ctypes.c_int(int(_DTYPE_NP_TO_MX[_np.dtype(dtype).type])),
ctypes.byref(hdl)))
if _int64_enabled():
check_call(_LIB.MXNDArrayCreateEx64(
c_array_buf(mx_int64, native_array('q', shape)),
ctypes.c_int(len(shape)),
ctypes.c_int(ctx.device_typeid),
ctypes.c_int(ctx.device_id),
ctypes.c_int(int(delay_alloc)),
ctypes.c_int(int(_DTYPE_NP_TO_MX[_np.dtype(dtype).type])),
ctypes.byref(hdl)))
else:
# When shape is larger than uint32 then there is an overflow error at python end itself.
# It needs to be caught here since the call doesn't even reach backend.
array_size = 1
for idx in shape:
array_size = array_size * idx
if array_size > _SIGNED_INT32_UPPER_LIMIT:
raise Exception("[_new_alloc_handle] Size of tensor you are trying to allocate is " +
"larger than 2^31 elements. Please build with flag " +
"USE_INT64_TENSOR_SIZE=1")
if _np.dtype(dtype) == _np.dtype([('bfloat16', _np.uint16)]):
dtype_type = _np.dtype(dtype)
else:
dtype_type = _np.dtype(dtype).type
check_call(_LIB.MXNDArrayCreateEx(
c_array_buf(mx_uint, native_array('I', shape)),
mx_uint(len(shape)),
ctypes.c_int(ctx.device_typeid),
ctypes.c_int(ctx.device_id),
ctypes.c_int(int(delay_alloc)),
ctypes.c_int(int(_DTYPE_NP_TO_MX[dtype_type])),
ctypes.byref(hdl)))
return hdl


Expand Down Expand Up @@ -399,14 +433,24 @@ def _get_np_basic_indexing(self, key):
)
handle = NDArrayHandle()
flat_self = self.reshape_view(-1)
check_call(
_LIB.MXNDArraySlice(
flat_self.handle,
mx_uint(flat_begin),
mx_uint(flat_end),
ctypes.byref(handle),
if _int64_enabled():
check_call(
_LIB.MXNDArraySlice64(
flat_self.handle,
ctypes.c_int64(flat_begin),
ctypes.c_int64(flat_end),
ctypes.byref(handle),
)
)
else:
check_call(
_LIB.MXNDArraySlice(
flat_self.handle,
ctypes.c_uint32(flat_begin),
ctypes.c_uint32(flat_end),
ctypes.byref(handle),
)
)
)
sliced_shape = self._basic_indexing_sliced_shape(slc_key, self.shape)
sliced = self.__class__(handle=handle, writable=self.writable)
if 0 in sliced_shape:
Expand Down Expand Up @@ -2263,7 +2307,33 @@ def _scatter_set_nd(self, value_nd, indices):

@property
def shape(self):
return super(ndarray, self).shape
"""Tuple of array dimensions.

Examples
--------
>>> x = mx.np.array([1, 2, 3, 4])
>>> x.shape
(4L,)
>>> y = mx.np.zeros((2, 3, 4))
>>> y.shape
(2L, 3L, 4L)
>>> z = mx.np.array(3)
>>> z.shape
()
"""
num_dim = mx_int()
if _int64_enabled():
pdata = ctypes.POINTER(mx_int64)()
check_call(_LIB.MXNDArrayGetShapeEx64(
self.handle, ctypes.byref(num_dim), ctypes.byref(pdata)))
else:
pdata = ctypes.POINTER(mx_int)()
check_call(_LIB.MXNDArrayGetShapeEx(
self.handle, ctypes.byref(num_dim), ctypes.byref(pdata)))
if num_dim.value == -1:
return None
else:
return tuple(pdata[:num_dim.value]) # pylint: disable=invalid-slice-index

@property
def ndim(self):
Expand Down
78 changes: 78 additions & 0 deletions tests/nightly/test_np_large_array.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

import os
import sys
import tempfile
import math
import numpy as _np
import mxnet as mx

curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__)))
sys.path.append(os.path.join(curr_path, '../python/unittest/'))

from mxnet.test_utils import rand_ndarray, assert_almost_equal, rand_coord_2d, default_context, check_symbolic_forward, create_2d_tensor, use_np
from mxnet import gluon, np, npx
from common import with_seed
import pytest


# dimension constants
MEDIUM_X = 10000
LARGE_X = 100000000
SMALL_X = 100
SMALL_Y = 50


@use_np
def test_gluon_embedding():
m = gluon.nn.Embedding(SMALL_Y, MEDIUM_X)
m.initialize()
a = np.zeros((MEDIUM_X, SMALL_Y))
b = m(a)
assert b.shape == (MEDIUM_X, SMALL_Y, MEDIUM_X)
assert b.asnumpy().size == MEDIUM_X * SMALL_Y * MEDIUM_X

@use_np
def test_fully_connected():
a = np.ones(shape=(LARGE_X, SMALL_Y))
b = np.ones(shape=(SMALL_Y, SMALL_Y))
c = np.ones(shape=(b.shape[0],))

# w/o bias
res = mx.npx.fully_connected(a, b, num_hidden=b.shape[0], no_bias=True)
assert np.sum(res[-1] == a.shape[1]) == b.shape[0]

# w/ bias
res = mx.npx.fully_connected(a, b, c, num_hidden=b.shape[0], no_bias=False)
assert np.sum(res[-1] == a.shape[1] + 1) == b.shape[0]

@use_np
def test_dense():
data = np.ones(shape=(LARGE_X, SMALL_X))
linear = gluon.nn.Dense(SMALL_Y)
linear.initialize()
res = linear(data)
assert res.shape == (LARGE_X, SMALL_Y)

@use_np
def test_softmax():
input_data = np.ones((SMALL_Y, LARGE_X))
for axis in [0, 1]:
true_output = np.full((SMALL_Y, LARGE_X), (1 / input_data.shape[axis]))
output = npx.softmax(input_data, axis=axis)
assert_almost_equal(output.asnumpy(), true_output, rtol=1e-5, atol=1e-5)