Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Fix npx.softmax for 0-sized inputs #17796

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
56 changes: 30 additions & 26 deletions src/operator/nn/softmax-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -71,6 +71,7 @@ template<typename OP, bool negate, typename AType, typename DType, typename OTyp
inline void Softmax(Stream<cpu> *s, DType *in, OType *out, IType *length,
Shape<ndim> shape, int axis, const DType temperature) {
index_t M = shape[axis];
if (M == 0) return;
index_t N = shape.Size()/M;
Shape<ndim> stride = calc_stride(shape);
Shape<ndim> sshape = shape;
Expand Down Expand Up @@ -186,6 +187,7 @@ inline void SoftmaxGrad(Stream<cpu> *s, OType *out, OType *ograd,
DType *igrad, IType *length, Shape<ndim> shape,
int axis, const DType temperature) {
index_t M = shape[axis];
if (M == 0) return;
index_t N = shape.Size()/M;
Shape<ndim> stride = calc_stride(shape);
Shape<ndim> sshape = shape;
Expand Down Expand Up @@ -402,6 +404,7 @@ inline void Softmax(Stream<gpu> *s, DType *in, OType *out, IType *length,
const int x_bits = 7;
const int x_size = 1 << x_bits;
index_t M = shape[axis];
if (M == 0 || shape.Size() == 0) return;
index_t N = shape.Size()/M;
Shape<ndim> stride = calc_stride(shape);
Shape<ndim> sshape = shape;
Expand Down Expand Up @@ -555,6 +558,7 @@ inline void SoftmaxGrad(Stream<gpu> *s, OType *out, OType *ograd,
const int x_bits = 7;
const int x_size = 1 << x_bits;
index_t M = shape[axis];
if (M == 0 || shape.Size() == 0) return;
index_t N = shape.Size()/M;
Shape<ndim> stride = calc_stride(shape);
Shape<ndim> sshape = shape;
Expand Down Expand Up @@ -798,35 +802,35 @@ void SoftmaxCompute(const nnvm::NodeAttrs& attrs,
type = inputs[1].type_flag_;
}
MXNET_INT32_INT64_TYPE_SWITCH(type, IType, {
IType* mask_ptr = nullptr;
if (param.use_length.value()) {
mask_ptr = inputs[1].dptr<IType>();
IType* mask_ptr = nullptr;
if (param.use_length.value()) {
mask_ptr = inputs[1].dptr<IType>();
}
if (safe_acc) {
if (shape.ndim() == 2) {
Softmax<OP, negate, AType>(
ctx.get_stream<xpu>(), inputs[0].dptr<DType>(),
outputs[0].dptr<OType>(), mask_ptr, shape.get<2>(),
axis, static_cast<DType>(temperature));
} else {
Softmax<OP, negate, AType>(
ctx.get_stream<xpu>(), inputs[0].dptr<DType>(),
outputs[0].dptr<OType>(), mask_ptr, shape.get<3>(),
axis, static_cast<DType>(temperature));
}
if (safe_acc) {
if (shape.ndim() == 2) {
Softmax<OP, negate, AType>(
ctx.get_stream<xpu>(), inputs[0].dptr<DType>(),
outputs[0].dptr<OType>(), mask_ptr, shape.get<2>(),
axis, static_cast<DType>(temperature));
} else {
Softmax<OP, negate, AType>(
ctx.get_stream<xpu>(), inputs[0].dptr<DType>(),
outputs[0].dptr<OType>(), mask_ptr, shape.get<3>(),
axis, static_cast<DType>(temperature));
}
} else {
if (shape.ndim() == 2) {
Softmax<OP, negate, DType>(
ctx.get_stream<xpu>(), inputs[0].dptr<DType>(),
outputs[0].dptr<OType>(), mask_ptr, shape.get<2>(),
axis, static_cast<DType>(temperature));
} else {
if (shape.ndim() == 2) {
Softmax<OP, negate, DType>(
ctx.get_stream<xpu>(), inputs[0].dptr<DType>(),
outputs[0].dptr<OType>(), mask_ptr, shape.get<2>(),
axis, static_cast<DType>(temperature));
} else {
Softmax<OP, negate, DType>(
ctx.get_stream<xpu>(), inputs[0].dptr<DType>(),
outputs[0].dptr<OType>(), mask_ptr, shape.get<3>(),
axis, static_cast<DType>(temperature));
}
Softmax<OP, negate, DType>(
ctx.get_stream<xpu>(), inputs[0].dptr<DType>(),
outputs[0].dptr<OType>(), mask_ptr, shape.get<3>(),
axis, static_cast<DType>(temperature));
}
}
});
});
});
Expand Down
6 changes: 4 additions & 2 deletions src/operator/numpy/np_boolean_mask_assign.cc
Original file line number Diff line number Diff line change
Expand Up @@ -220,10 +220,9 @@ void NumpyBooleanAssignForwardCPU(const nnvm::NodeAttrs& attrs,
// If there's no True in mask, return directly
if (valid_num == 0) return;

const TShape& vshape = inputs.at(2).shape_;

if (inputs.size() == 3U) {
// tensor case
const TShape& vshape = inputs.at(2).shape_;
if (inputs[2].shape_.Size() != 1) {
auto vndim = vshape.ndim();
auto dndim = dshape.ndim();
Expand Down Expand Up @@ -253,6 +252,8 @@ void NumpyBooleanAssignForwardCPU(const nnvm::NodeAttrs& attrs,
}

if (inputs.size() == 3U) {
// tensor case
const TShape& vshape = inputs.at(2).shape_;
MSHADOW_TYPE_SWITCH_WITH_BOOL(data.type_flag_, DType, {
if (inputs[2].shape_.Size() == 1) {
Kernel<BooleanAssignCPUKernel<true>, cpu>::Launch(
Expand All @@ -268,6 +269,7 @@ void NumpyBooleanAssignForwardCPU(const nnvm::NodeAttrs& attrs,
}
});
} else {
// scalar case
CHECK(attrs.dict.find("value") != attrs.dict.end()) << "value needs be provided";
MSHADOW_TYPE_SWITCH_WITH_BOOL(data.type_flag_, DType, {
Kernel<BooleanAssignCPUKernel<true>, cpu>::Launch(
Expand Down
40 changes: 39 additions & 1 deletion tests/python/unittest/test_numpy_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -1486,7 +1486,45 @@ def gt_grad_batch_dot_numpy(lhs, rhs, ograd, transpose_a, transpose_b, lhs_req,

@with_seed()
@use_np
@unittest.skip("NumpyBooleanAssignForwardCPU broken: https://github.com/apache/incubator-mxnet/issues/17990")
def test_npx_softmax():
class TestSoftmax(HybridBlock):
def __init__(self, axis):
super(TestSoftmax, self).__init__()
self._axis = axis

def hybrid_forward(self, F, a):
return F.npx.softmax(a, axis=axis)

def np_softmax(x, axis=-1):
if (x.shape[axis] == 0):
return _np.sum(x, axis=axis, keepdims=True)
x = x - _np.max(x, axis=axis, keepdims=True)
x = _np.exp(x)
x /= _np.sum(x, axis=axis, keepdims=True)
return x

# only testing 0-size shaped inputs here, other input cases have been tested in test_opeartor.py
for hybridize in [True, False]:
for shape in [(3, 0, 4), (0, 0)]:
mx_a = np.random.uniform(size=shape)
mx_a.attach_grad()
for axis in range(-len(shape), len(shape)):
test_softmax = TestSoftmax(axis)
if hybridize:
test_softmax.hybridize()

with mx.autograd.record():
mx_out = test_softmax(mx_a)

np_out = np_softmax(mx_a.asnumpy(), axis)
assert_almost_equal(mx_out.asnumpy(), np_out, rtol=1e-3, atol=1e-5, equal_nan=True)

mx_out.backward()
assert_almost_equal(mx_a.grad.asnumpy(), _np.zeros(shape), rtol=1e-3, atol=1e-5)


@with_seed()
@use_np
def test_npi_boolean_assign():
class TestBooleanAssignScalar(HybridBlock):
def __init__(self, val, start_axis):
Expand Down