Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[numpy] Add np.random.pareto and np.random.power #17517

Merged
merged 2 commits into from
Feb 6, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
90 changes: 88 additions & 2 deletions python/mxnet/ndarray/numpy/random.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@


__all__ = ['randint', 'uniform', 'normal', "choice", "rand", "multinomial", "multivariate_normal",
"shuffle", 'gamma', 'beta', 'exponential', 'lognormal', 'weibull']
"shuffle", 'gamma', 'beta', 'exponential', 'lognormal', 'weibull', 'pareto', 'power']


def randint(low, high=None, size=None, dtype=None, ctx=None, out=None):
Expand Down Expand Up @@ -462,7 +462,7 @@ def exponential(scale, size):
return _npi.exponential(scale=scale, size=size)


def weibull(a, size):
def weibull(a, size=None):
r"""Draw samples from a 1-parameter Weibull distribution with given
parameter a, via inversion.

Expand Down Expand Up @@ -515,6 +515,92 @@ def weibull(a, size):
return _npi.weibull(a=a, size=size)


def pareto(a, size=None):
r"""Draw samples from a Pareto II or Lomax distribution with specified shape a.

Parameters
----------
a : float or array_like of floats
Shape of the distribution. Must be > 0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``a`` is a scalar. Otherwise,
``np.array(a).size`` samples are drawn.

Returns
-------
out : ndarray or scalar
Drawn samples from the Pareto distribution.

Examples
--------
>>> np.random.pareto(a=5)
array(0.12749612)
>>> mx.numpy.random.pareto(a=5, size=[2,3])
array([[0.06933999, 0.0344373 , 0.10654891],
[0.0311172 , 0.12911797, 0.03370714]])
>>> np.random.pareto(a=np.array([2,3])
array([0.26636696, 0.15685666])

The probability density for the Pareto distribution is f(x) = \frac{am^a}{x^{a+1}}
where a is the shape and m the scale. Here m is assumed 1. The Pareto distribution
is a power law distribution. Pareto created it to describe the wealth in the economy.
"""
from ...numpy import ndarray as np_ndarray
tensor_type_name = np_ndarray
if size == ():
size = None
is_tensor = isinstance(a, tensor_type_name)
if is_tensor:
return _npi.pareto(a, a=None, size=size)
else:
return _npi.pareto(a=a, size=size)


def power(a, size=None):
r"""Draw samples in [0, 1] from a power distribution with given parameter a.

Parameters
----------
a : float or array_like of floats
Shape of the distribution. Must be > 0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``a`` is a scalar. Otherwise,
``np.array(a).size`` samples are drawn.

Returns
-------
out : ndarray or scalar
Drawn samples from the power distribution.

Examples
--------
>>> np.random.power(a=5)
array(0.8602478)
>>> np.random.power(a=5, size=[2,3])
array([[0.988391 , 0.5153122 , 0.9383134 ],
[0.9078098 , 0.87819266, 0.730635]])
>>> np.random.power(a=np.array([2,3])
array([0.7499419 , 0.88894516])

The probability density function is f(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.
The power distribution is just the inverse of the Pareto distribution and
a special case of the Beta distribution.
"""
from ...numpy import ndarray as np_ndarray
tensor_type_name = np_ndarray
if size == ():
size = None
is_tensor = isinstance(a, tensor_type_name)
if is_tensor:
return _npi.powerd(a, a=None, size=size)
else:
return _npi.powerd(a=a, size=size)


def gamma(shape, scale=1.0, size=None, dtype=None, ctx=None, out=None):
"""Draw samples from a Gamma distribution.

Expand Down
72 changes: 71 additions & 1 deletion python/mxnet/numpy/random.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@


__all__ = ["randint", "uniform", "normal", "choice", "rand", "multinomial", "multivariate_normal",
"shuffle", "randn", "gamma", 'beta', "exponential", "lognormal", "weibull"]
"shuffle", "randn", "gamma", 'beta', "exponential", "lognormal", "weibull", "pareto", "power"]


def randint(low, high=None, size=None, dtype=None, ctx=None, out=None):
Expand Down Expand Up @@ -529,6 +529,76 @@ def weibull(a, size=None):
return _mx_nd_np.random.weibull(a, size)


def pareto(a, size=None):
r"""Draw samples from a Pareto II or Lomax distribution with specified shape a.
Parameters
----------
a : float or array_like of floats
Shape of the distribution. Must be > 0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``a`` is a scalar. Otherwise,
``np.array(a).size`` samples are drawn.
Returns
-------
out : ndarray or scalar
Drawn samples from the Pareto distribution.
Examples
--------
>>> np.random.pareto(a=5)
array(0.12749612)
>>> mx.numpy.random.pareto(a=5, size=[2,3])
array([[0.06933999, 0.0344373 , 0.10654891],
[0.0311172 , 0.12911797, 0.03370714]])
>>> np.random.pareto(a=np.array([2,3])
array([0.26636696, 0.15685666])
The probability density for the Pareto distribution is f(x) = \frac{am^a}{x^{a+1}}
where a is the shape and m the scale. Here m is assumed 1. The Pareto distribution
is a power law distribution. Pareto created it to describe the wealth in the economy.
"""
return _mx_nd_np.random.pareto(a, size)


def power(a, size=None):
r"""Draw samples in [0, 1] from a power distribution with given parameter a.
Parameters
----------
a : float or array_like of floats
Shape of the distribution. Must be > 0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``a`` is a scalar. Otherwise,
``np.array(a).size`` samples are drawn.
Returns
-------
out : ndarray or scalar
Drawn samples from the power distribution.
Examples
--------
>>> np.random.power(a=5)
array(0.8602478)
>>> np.random.power(a=5, size=[2,3])
array([[0.988391 , 0.5153122 , 0.9383134 ],
[0.9078098 , 0.87819266, 0.730635]])
>>> np.random.power(a=np.array([2,3])
array([0.7499419 , 0.88894516])
The probability density function is f(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.
The power distribution is just the inverse of the Pareto distribution and
a special case of the Beta distribution.
"""
return _mx_nd_np.random.power(a, size)


def shuffle(x):
"""
Modify a sequence in-place by shuffling its contents.
Expand Down
90 changes: 88 additions & 2 deletions python/mxnet/symbol/numpy/random.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@


__all__ = ['randint', 'uniform', 'normal', 'multivariate_normal',
'rand', 'shuffle', 'gamma', 'beta', 'exponential', 'lognormal', 'weibull']
'rand', 'shuffle', 'gamma', 'beta', 'exponential', 'lognormal', 'weibull', 'pareto', 'power']


def randint(low, high=None, size=None, dtype=None, ctx=None, out=None):
Expand Down Expand Up @@ -469,7 +469,7 @@ def exponential(scale=1.0, size=None):
return _npi.exponential(scale=scale, size=size)


def weibull(a, size):
def weibull(a, size=None):
r"""Draw samples from a 1-parameter Weibull distribution with given parameter a
via inversion.

Expand Down Expand Up @@ -524,6 +524,92 @@ def weibull(a, size):
return _npi.weibull(a=a, size=size)


def pareto(a, size=None):
r"""Draw samples from a Pareto II or Lomax distribution with specified shape a.

Parameters
----------
a : float or array_like of floats
Shape of the distribution. Must be > 0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``a`` is a scalar. Otherwise,
``np.array(a).size`` samples are drawn.

Returns
-------
out : _Symbol
Drawn samples from the Pareto distribution.

Examples
--------
>>> np.random.pareto(a=5)
array(0.12749612)
>>> mx.numpy.random.pareto(a=5, size=[2,3])
array([[0.06933999, 0.0344373 , 0.10654891],
[0.0311172 , 0.12911797, 0.03370714]])
>>> np.random.pareto(a=np.array([2,3])
array([0.26636696, 0.15685666])

The probability density for the Pareto distribution is f(x) = \frac{am^a}{x^{a+1}}
where a is the shape and m the scale. Here m is assumed 1. The Pareto distribution
is a power law distribution. Pareto created it to describe the wealth in the economy.
"""
from ..numpy import _Symbol as np_symbol
tensor_type_name = np_symbol
if size == ():
size = None
is_tensor = isinstance(a, tensor_type_name)
if is_tensor:
return _npi.pareto(a, a=None, size=size)
else:
return _npi.pareto(a=a, size=size)


def power(a, size=None):
r"""Draw samples in [0, 1] from a power distribution with given parameter a.

Parameters
----------
a : float or array_like of floats
Shape of the distribution. Must be > 0.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then
``m * n * k`` samples are drawn. If size is ``None`` (default),
a single value is returned if ``a`` is a scalar. Otherwise,
``np.array(a).size`` samples are drawn.

Returns
-------
out : _Symbol
Drawn samples from the power distribution.

Examples
--------
>>> np.random.power(a=5)
array(0.8602478)
>>> np.random.power(a=5, size=[2,3])
array([[0.988391 , 0.5153122 , 0.9383134 ],
[0.9078098 , 0.87819266, 0.730635]])
>>> np.random.power(a=np.array([2,3])
array([0.7499419 , 0.88894516])

The probability density function is f(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.
The power distribution is just the inverse of the Pareto distribution and
a special case of the Beta distribution.
"""
from ..numpy import _Symbol as np_symbol
tensor_type_name = np_symbol
if size == ():
size = None
is_tensor = isinstance(a, tensor_type_name)
if is_tensor:
return _npi.powerd(a, a=None, size=size)
else:
return _npi.powerd(a=a, size=size)


def multivariate_normal(mean, cov, size=None, check_valid=None, tol=None):
"""
multivariate_normal(mean, cov, size=None, check_valid=None, tol=None)
Expand Down
72 changes: 72 additions & 0 deletions src/operator/numpy/random/np_pareto_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2019 by Contributors
* \file np_pareto_op.cc
* \brief Operator for numpy sampling from Pareto distributions
*/

#include "./np_pareto_op.h"
#include "./dist_common.h"

namespace mxnet {
namespace op {

DMLC_REGISTER_PARAMETER(NumpyParetoParam);

NNVM_REGISTER_OP(_npi_pareto)
.set_num_inputs(
[](const nnvm::NodeAttrs& attrs) {
const NumpyParetoParam& param = nnvm::get<NumpyParetoParam>(attrs.parsed);
int num_inputs = 1;
if (param.a.has_value()) {
num_inputs -= 1;
}
return num_inputs;
})
.set_num_outputs(1)
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
const NumpyParetoParam& param = nnvm::get<NumpyParetoParam>(attrs.parsed);
int num_inputs = 1;
if (param.a.has_value()) {
num_inputs -= 1;
}
return (num_inputs == 0) ? std::vector<std::string>() : std::vector<std::string>{"input1"};
})
.set_attr_parser(ParamParser<NumpyParetoParam>)
.set_attr<mxnet::FInferShape>("FInferShape", UnaryDistOpShape<NumpyParetoParam>)
.set_attr<nnvm::FInferType>("FInferType",
[](const nnvm::NodeAttrs &attrs, std::vector<int> *in_attrs, std::vector<int> *out_attrs) {
(*out_attrs)[0] = mshadow::kFloat32;
return true;
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const nnvm::NodeAttrs& attrs) {
return std::vector<ResourceRequest>{
ResourceRequest::kRandom, ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", NumpyParetoForward<cpu>)
.set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes)
.add_argument("input1", "NDArray-or-Symbol", "Source input")
.add_arguments(NumpyParetoParam::__FIELDS__());

} // namespace op
} // namespace mxnet
Loading