Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Add mask target generator operator for Mask-RCNN #16268

Merged
merged 3 commits into from
Oct 14, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
132 changes: 132 additions & 0 deletions src/operator/contrib/mrcnn_target-inl.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,132 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2019 by Contributors
* \file mrcnn_target-inl.h
* \brief Mask-RCNN target generator
* \author Serge Panev
*/


#ifndef MXNET_OPERATOR_CONTRIB_MRCNN_TARGET_INL_H_
#define MXNET_OPERATOR_CONTRIB_MRCNN_TARGET_INL_H_

#include <mxnet/operator.h>
#include <vector>
#include "../operator_common.h"
#include "../mshadow_op.h"
#include "../tensor/init_op.h"

namespace mxnet {
namespace op {

namespace mrcnn_index {
enum ROIAlignOpInputs {kRoi, kGtMask, kMatches, kClasses};
enum ROIAlignOpOutputs {kMask, kMaskClasses};
} // namespace mrcnn_index

struct MRCNNTargetParam : public dmlc::Parameter<MRCNNTargetParam> {
int num_rois;
int num_classes;
int mask_size;
int sample_ratio;

DMLC_DECLARE_PARAMETER(MRCNNTargetParam) {
DMLC_DECLARE_FIELD(num_rois)
.describe("Number of sampled RoIs.");
DMLC_DECLARE_FIELD(num_classes)
.describe("Number of classes.");
DMLC_DECLARE_FIELD(mask_size)
.describe("Size of the pooled masks.");
DMLC_DECLARE_FIELD(sample_ratio).set_default(2)
.describe("Sampling ratio of ROI align. Set to -1 to use adaptative size.");
}
};

inline bool MRCNNTargetShape(const NodeAttrs& attrs,
std::vector<mxnet::TShape>* in_shape,
std::vector<mxnet::TShape>* out_shape) {
using namespace mshadow;
const MRCNNTargetParam& param = nnvm::get<MRCNNTargetParam>(attrs.parsed);

CHECK_EQ(in_shape->size(), 4) << "Input:[rois, gt_masks, matches, cls_targets]";

// (B, N, 4)
mxnet::TShape tshape = in_shape->at(mrcnn_index::kRoi);
CHECK_EQ(tshape.ndim(), 3) << "rois should be a 2D tensor of shape [batch, rois, 4]";
CHECK_EQ(tshape[2], 4) << "rois should be a 2D tensor of shape [batch, rois, 4]";
auto batch_size = tshape[0];
auto num_rois = tshape[1];

// (B, M, H, W)
tshape = in_shape->at(mrcnn_index::kGtMask);
CHECK_EQ(tshape.ndim(), 4) << "gt_masks should be a 4D tensor";
CHECK_EQ(tshape[0], batch_size) << " batch size should be the same for all the inputs.";

// (B, N)
tshape = in_shape->at(mrcnn_index::kMatches);
CHECK_EQ(tshape.ndim(), 2) << "matches should be a 2D tensor";
CHECK_EQ(tshape[0], batch_size) << " batch size should be the same for all the inputs.";

// (B, N)
tshape = in_shape->at(mrcnn_index::kClasses);
CHECK_EQ(tshape.ndim(), 2) << "matches should be a 2D tensor";
CHECK_EQ(tshape[0], batch_size) << " batch size should be the same for all the inputs.";

// out: 2 * (B, N, C, MS, MS)
auto oshape = Shape5(batch_size, num_rois, param.num_classes, param.mask_size, param.mask_size);
out_shape->clear();
out_shape->push_back(oshape);
out_shape->push_back(oshape);
return true;
}

inline bool MRCNNTargetType(const NodeAttrs& attrs,
std::vector<int>* in_type,
std::vector<int>* out_type) {
CHECK_EQ(in_type->size(), 4);
int dtype = (*in_type)[1];
CHECK_NE(dtype, -1) << "Input must have specified type";

out_type->clear();
out_type->push_back(dtype);
out_type->push_back(dtype);
return true;
}

template<typename xpu>
void MRCNNTargetRun(const MRCNNTargetParam& param, const std::vector<TBlob> &inputs,
const std::vector<TBlob> &outputs, mshadow::Stream<xpu> *s);

template<typename xpu>
void MRCNNTargetCompute(const nnvm::NodeAttrs& attrs,
const OpContext &ctx,
const std::vector<TBlob> &inputs,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &outputs) {
auto s = ctx.get_stream<xpu>();
const auto& p = dmlc::get<MRCNNTargetParam>(attrs.parsed);
MRCNNTargetRun<xpu>(p, inputs, outputs, s);
}

} // namespace op
} // namespace mxnet

#endif // MXNET_OPERATOR_CONTRIB_MRCNN_TARGET_INL_H_
Loading