Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[Numpy] Numpy behavior normal distribution #16109

Merged
merged 9 commits into from
Sep 19, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 21 additions & 17 deletions python/mxnet/ndarray/numpy/random.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,6 @@
from ...context import current_context
from . import _internal as _npi
from ..ndarray import NDArray
from ...base import numeric_types


__all__ = ['randint', 'uniform', 'normal', "choice"]
Expand Down Expand Up @@ -145,7 +144,7 @@ def uniform(low=0.0, high=1.0, size=None, dtype=None, ctx=None, out=None):
ctx=ctx, dtype=dtype, out=out)


def normal(loc=0.0, scale=1.0, size=None, **kwargs):
def normal(loc=0.0, scale=1.0, size=None, dtype=None, **kwargs):
"""Draw random samples from a normal (Gaussian) distribution.

Samples are distributed according to a normal distribution parametrized
Expand All @@ -166,31 +165,36 @@ def normal(loc=0.0, scale=1.0, size=None, **kwargs):
Data type of output samples. Default is 'float32'
ctx : Context, optional
Device context of output. Default is current context.
out : ``ndarray``, optional
Store output to an existing ``ndarray``.

Returns
-------
out : ndarray
Drawn samples from the parameterized normal distribution.

Notes
-----
This function currently does not support ``loc`` and ``scale`` as ndarrays.
"""
dtype = kwargs.pop('dtype', None)
from ...numpy import ndarray as np_ndarray
input_type = (isinstance(loc, np_ndarray), isinstance(scale, np_ndarray))
ctx = kwargs.pop('ctx', None)
out = kwargs.pop('out', None)
if dtype is None:
dtype = 'float32'
ctx = kwargs.pop('ctx', None)
if ctx is None:
ctx = current_context()
out = kwargs.pop('out', None)
if size is None and out is None:
size = ()
if (not isinstance(loc, numeric_types)) or (not isinstance(scale, numeric_types)):
raise NotImplementedError('np.random.normal only supports loc and scale of '
'numeric types for now')
return _npi.random_normal(loc, scale, shape=size, dtype=dtype, ctx=ctx, out=out, **kwargs)
if out is not None:
size = out.shape
if size == ():
size = None
if input_type == (True, True):
return _npi.normal(loc, scale, loc=None, scale=None, size=size,
ctx=ctx, dtype=dtype, out=out)
elif input_type == (False, True):
return _npi.normal(scale, loc=loc, scale=None, size=size,
ctx=ctx, dtype=dtype, out=out)
elif input_type == (True, False):
return _npi.normal(loc, loc=None, scale=scale, size=size,
ctx=ctx, dtype=dtype, out=out)
else:
return _npi.normal(loc=loc, scale=scale, size=size,
ctx=ctx, dtype=dtype, out=out)


def multinomial(n, pvals, size=None):
Expand Down
10 changes: 3 additions & 7 deletions python/mxnet/numpy/random.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,7 +110,7 @@ def uniform(low=0.0, high=1.0, size=None, dtype=None, ctx=None, out=None):
return _mx_nd_np.random.uniform(low, high, size=size, ctx=ctx, dtype=dtype, out=out)


def normal(loc=0.0, scale=1.0, size=None, **kwargs):
def normal(loc=0.0, scale=1.0, size=None, dtype=None, **kwargs):
"""Draw random samples from a normal (Gaussian) distribution.

Samples are distributed according to a normal distribution parametrized
Expand All @@ -130,20 +130,16 @@ def normal(loc=0.0, scale=1.0, size=None, **kwargs):
dtype : {'float16', 'float32', 'float64'}, optional
Data type of output samples. Default is 'float32'
ctx : Context, optional
Device context of output. Default is current context.
Device context of output, default is current context.
out : ``ndarray``, optional
Store output to an existing ``ndarray``.

Returns
-------
out : ndarray
Drawn samples from the parameterized normal distribution.

Notes
-----
This function currently does not support ``loc`` and ``scale`` as ndarrays.
"""
return _mx_nd_np.random.normal(loc, scale, size, **kwargs)
return _mx_nd_np.random.normal(loc, scale, size, dtype, **kwargs)


def multinomial(n, pvals, size=None, **kwargs):
Expand Down
39 changes: 22 additions & 17 deletions python/mxnet/symbol/numpy/random.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,6 @@
from __future__ import absolute_import
from ...context import current_context
from . import _internal as _npi
from ...base import numeric_types


__all__ = ['randint', 'uniform', 'normal']
Expand Down Expand Up @@ -144,7 +143,7 @@ def uniform(low=0.0, high=1.0, size=None, dtype=None, ctx=None, out=None):
ctx=ctx, dtype=dtype, out=out)


def normal(loc=0.0, scale=1.0, size=None, **kwargs):
def normal(loc=0.0, scale=1.0, size=None, dtype=None, **kwargs):
"""Draw random samples from a normal (Gaussian) distribution.

Samples are distributed according to a normal distribution parametrized
Expand All @@ -162,34 +161,40 @@ def normal(loc=0.0, scale=1.0, size=None, **kwargs):
samples are drawn. If size is `None` (default), a scalar tensor containing
a single value is returned if loc and scale are both scalars.
dtype : {'float16', 'float32', 'float64'}, optional
Data type of output samples. Default is 'float32'
Data type of output samples. Default is 'float32'.
ctx : Context, optional
Device context of output. Default is current context.
out : ``ndarray``, optional
Store output to an existing ``ndarray``.

Returns
-------
out : _Symbol (symbol representing `mxnet.numpy.ndarray` in computational graphs)
Drawn samples from the parameterized normal distribution.

Notes
-----
This function currently does not support ``loc`` and ``scale`` as `_Symbol`s.
"""
dtype = kwargs.pop('dtype', None)
from ._symbol import _Symbol as np_symbol
input_type = (isinstance(loc, np_symbol), isinstance(scale, np_symbol))
ctx = kwargs.pop('ctx', None)
out = kwargs.pop('out', None)
if dtype is None:
dtype = 'float32'
ctx = kwargs.pop('ctx', None)
if ctx is None:
ctx = current_context()
out = kwargs.pop('out', None)
if size is None and out is None:
size = ()
if (not isinstance(loc, numeric_types)) or (not isinstance(scale, numeric_types)):
raise NotImplementedError('np.random.normal only supports loc and scale of '
'numeric types for now')
return _npi.random_normal(loc, scale, shape=size, dtype=dtype, ctx=ctx, out=out, **kwargs)
if out is not None:
size = out.shape
if size == ():
size = None
if input_type == (True, True):
return _npi.normal(loc, scale, loc=None, scale=None, size=size,
ctx=ctx, dtype=dtype, out=out)
elif input_type == (False, True):
return _npi.normal(scale, loc=loc, scale=None, size=size,
ctx=ctx, dtype=dtype, out=out)
elif input_type == (True, False):
return _npi.normal(loc, loc=None, scale=scale, size=size,
ctx=ctx, dtype=dtype, out=out)
else:
return _npi.normal(loc=loc, scale=scale, size=size,
ctx=ctx, dtype=dtype, out=out)


def choice(a, size=None, replace=True, p=None, **kwargs):
Expand Down
43 changes: 43 additions & 0 deletions src/operator/numpy/random/dist_common.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2015 by Contributors
* \file dist_common.cc
* \brief Function definition of common functions for distributions
* \with two parameters.
*/

#include "./dist_common.h"

namespace mxnet {
namespace op {

template <>
void _copy<cpu>(float *dst, float *src) {
*dst = *src;
}

template <>
void _copy<cpu>(double *dst, double *src) {
*dst = *src;
}

} // namespace op
} // namespace mxnet
43 changes: 43 additions & 0 deletions src/operator/numpy/random/dist_common.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2015 by Contributors
* \file dist_common.cuh
* \brief Function definition of common functions for distributions
* \with two parameters.
*/

#include "./dist_common.h"

namespace mxnet {
namespace op {

template <>
void _copy<gpu>(float *dst, float *src) {
CUDA_CALL(cudaMemcpy(dst, src, sizeof(float), cudaMemcpyDeviceToHost));
}

template <>
void _copy<gpu>(double *dst, double *src) {
CUDA_CALL(cudaMemcpy(dst, src, sizeof(double), cudaMemcpyDeviceToHost));
}

} // namespace op
} // namespace mxnet
7 changes: 7 additions & 0 deletions src/operator/numpy/random/dist_common.h
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,13 @@
namespace mxnet {
namespace op {

template <typename xpu>
void _copy(float *dst, float*src);

template <typename xpu>
void _copy(double *dst, double*src);


inline int FillShape(const mxnet::TShape &lshape, const mxnet::TShape &rshape,
const mxnet::TShape &oshape, mxnet::TShape *new_lshape,
mxnet::TShape *new_rshape, mxnet::TShape *new_oshape) {
Expand Down
69 changes: 69 additions & 0 deletions src/operator/numpy/random/np_normal_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2019 by Contributors
* \file np_random_op.cc
* \brief Operator for numpy sampling from normal distributions.
*/
#include "./np_normal_op.h"

namespace mxnet {
namespace op {

DMLC_REGISTER_PARAMETER(NumpyNormalParam);

NNVM_REGISTER_OP(_npi_normal)
.describe("Numpy behavior normal")
.set_num_inputs(
[](const nnvm::NodeAttrs& attrs) {
const NumpyNormalParam& param = nnvm::get<NumpyNormalParam>(attrs.parsed);
int num_inputs = 2;
if (param.loc.has_value()) num_inputs -= 1;
if (param.scale.has_value()) num_inputs -= 1;
return num_inputs;
}
)
.set_num_outputs(1)
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
const NumpyNormalParam& param = nnvm::get<NumpyNormalParam>(attrs.parsed);
int num_inputs = 2;
if (param.loc.has_value()) num_inputs -= 1;
if (param.scale.has_value()) num_inputs -= 1;
if (num_inputs == 0) return std::vector<std::string>();
if (num_inputs == 1) return std::vector<std::string>{"input1"};
return std::vector<std::string>{"input1", "input2"};
})
.set_attr_parser(ParamParser<NumpyNormalParam>)
.set_attr<mxnet::FInferShape>("FInferShape", TwoparamsDistOpShape<NumpyNormalParam>)
.set_attr<nnvm::FInferType>("FInferType", NumpyNormalOpType)
.set_attr<FResourceRequest>("FResourceRequest",
[](const nnvm::NodeAttrs& attrs) {
return std::vector<ResourceRequest>{
ResourceRequest::kRandom, ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", NumpyNormalForward<cpu>)
.set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes)
.add_argument("input1", "NDArray-or-Symbol", "Source input")
.add_argument("input2", "NDArray-or-Symbol", "Source input")
.add_arguments(NumpyNormalParam::__FIELDS__());

} // namespace op
} // namespace mxnet
35 changes: 35 additions & 0 deletions src/operator/numpy/random/np_normal_op.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2019 by Contributors
* \file np_normal_op.cu
* \brief Operator for numpy sampling from normal distributions
*/

#include "./np_normal_op.h"

namespace mxnet {
namespace op {

NNVM_REGISTER_OP(_npi_normal)
.set_attr<FCompute>("FCompute<gpu>", NumpyNormalForward<gpu>);

} // namespace op
} // namespace mxnet
Loading