Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

numpy multinomial op #15878

Merged
merged 4 commits into from
Sep 4, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 54 additions & 0 deletions python/mxnet/ndarray/numpy/random.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,8 +17,10 @@

"""Namespace for operators used in Gluon dispatched by F=ndarray."""
from __future__ import absolute_import
import numpy as np
from ...context import current_context
from . import _internal as _npi
from ..ndarray import NDArray
from ...base import numeric_types


Expand Down Expand Up @@ -189,3 +191,55 @@ def normal(loc=0.0, scale=1.0, size=None, **kwargs):
raise NotImplementedError('np.random.normal only supports loc and scale of '
'numeric types for now')
return _npi.random_normal(loc, scale, shape=size, dtype=dtype, ctx=ctx, out=out, **kwargs)


def multinomial(n, pvals, size=None):
"""multinomial(n, pvals, size=None)

Draw samples from a multinomial distribution.

The multinomial distribution is a multivariate generalisation of the binomial distribution.
Take an experiment with one of ``p`` possible outcomes. An example of such an experiment is throwing a dice,
where the outcome can be 1 through 6. Each sample drawn from the distribution represents n such experiments.
Its values, ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the outcome was ``i``.

Parameters
----------
n : int
Number of experiments.
pvals : sequence of floats, length p
Probabilities of each of the p different outcomes. These should sum to 1.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples
are drawn. Default is None, in which case a single value is returned.

Returns
-------
out : ndarray
The drawn samples, of shape size, if that was provided. If not, the shape is ``(N,)``.
In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution.

Examples
--------
Throw a dice 1000 times, and 1000 times again:

>>> np.random.multinomial(1000, [1/6.]*6, size=2)
array([[164, 161, 179, 158, 150, 188],
[178, 162, 177, 143, 163, 177]])

A loaded die is more likely to land on number 6:

>>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
array([19, 14, 12, 11, 21, 23])

>>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3])
array([32, 68])
"""
if isinstance(pvals, NDArray):
stu1130 marked this conversation as resolved.
Show resolved Hide resolved
return _npi.multinomial(pvals, pvals=None, n=n, size=size)
else:
if isinstance(pvals, np.ndarray):
raise ValueError('numpy ndarray is not supported!')
if any(isinstance(i, list) for i in pvals):
raise ValueError('object too deep for desired array')
return _npi.multinomial(n=n, pvals=pvals, size=size)
36 changes: 36 additions & 0 deletions python/mxnet/numpy/random.py
Original file line number Diff line number Diff line change
Expand Up @@ -144,3 +144,39 @@ def normal(loc=0.0, scale=1.0, size=None, **kwargs):
This function currently does not support ``loc`` and ``scale`` as ndarrays.
"""
return _mx_nd_np.random.normal(loc, scale, size, **kwargs)


def multinomial(n, pvals, size=None, **kwargs):
"""multinomial(n, pvals, size=None)
Draw samples from a multinomial distribution.
The multinomial distribution is a multivariate generalisation of the binomial distribution.
Take an experiment with one of ``p`` possible outcomes. An example of such an experiment is throwing a dice,
where the outcome can be 1 through 6. Each sample drawn from the distribution represents n such experiments.
Its values, ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the outcome was ``i``.
Parameters
----------
n : int
Number of experiments.
pvals : sequence of floats, length p
Probabilities of each of the p different outcomes. These should sum to 1.
size : int or tuple of ints, optional
Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples
are drawn. Default is None, in which case a single value is returned.
Returns
-------
out : ndarray
The drawn samples, of shape size, if that was provided. If not, the shape is ``(N,)``.
In other words, each entry ``out[i,j,...,:]`` is an N-dimensional value drawn from the distribution.
Examples
--------
Throw a dice 1000 times, and 1000 times again:
>>> np.random.multinomial(1000, [1/6.]*6, size=2)
array([[164, 161, 179, 158, 150, 188],
[178, 162, 177, 143, 163, 177]])
A loaded die is more likely to land on number 6:
>>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
array([19, 14, 12, 11, 21, 23])
>>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3])
array([32, 68])
"""
return _mx_nd_np.random.multinomial(n, pvals, size, **kwargs)
61 changes: 61 additions & 0 deletions src/operator/numpy/random/np_multinomial_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2019 by Contributors
* \file np_multinomial_op.h
* \brief Operator for numpy sampling from multinomial distributions
*/
#include "./np_multinomial_op.h"

namespace mxnet {
namespace op {

DMLC_REGISTER_PARAMETER(NumpyMultinomialParam);

NNVM_REGISTER_OP(_npi_multinomial)
.describe(R"code(Draw samples from a multinomial distribution. "
"The multinomial distribution is a multivariate generalisation of the binomial distribution. "
"Take an experiment with one of p possible outcomes. "
"An example of such an experiment is throwing a dice, where the outcome can be 1 through 6. "
"Each sample drawn from the distribution represents n such experiments. "
"Its values, X_i = [X_0, X_1, ..., X_p], represent the number of times the outcome was i.
)code")
.set_num_inputs(
[](const nnvm::NodeAttrs& attrs) {
const NumpyMultinomialParam& param = nnvm::get<NumpyMultinomialParam>(attrs.parsed);
return param.pvals.has_value() ? 0U : 1U;
}
)
.set_num_outputs(1)
.set_attr_parser(ParamParser<NumpyMultinomialParam>)
.set_attr<mxnet::FInferShape>("FInferShape", NumpyMultinomialOpShape)
.set_attr<nnvm::FInferType>("FInferType", NumpyMultinomialOpType)
.set_attr<FResourceRequest>("FResourceRequest",
[](const nnvm::NodeAttrs& attrs) {
return std::vector<ResourceRequest>{
ResourceRequest::kRandom, ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", NumpyMultinomialForward<cpu>)
.set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes)
.add_argument("a", "NDArray-or-Symbol", "Source input")
.add_arguments(NumpyMultinomialParam::__FIELDS__());

} // namespace op
} // namespace mxnet
34 changes: 34 additions & 0 deletions src/operator/numpy/random/np_multinomial_op.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2019 by Contributors
* \file np_multinomial_op.cu
* \brief Operator for numpy sampling from multinomial distributions
*/
#include "./np_multinomial_op.h"

namespace mxnet {
namespace op {

NNVM_REGISTER_OP(_npi_multinomial)
.set_attr<FCompute>("FCompute<gpu>", NumpyMultinomialForward<gpu>);

} // namespace op
} // namespace mxnet
193 changes: 193 additions & 0 deletions src/operator/numpy/random/np_multinomial_op.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,193 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2019 by Contributors
* \file np_multinomial_op.h
* \brief Operator for sampling from multinomial distributions
*/
#ifndef MXNET_OPERATOR_NUMPY_RANDOM_NP_MULTINOMIAL_OP_H_
#define MXNET_OPERATOR_NUMPY_RANDOM_NP_MULTINOMIAL_OP_H_

#include <mxnet/operator_util.h>
#include <vector>
#include "../../mshadow_op.h"
#include "../../mxnet_op.h"
#include "../../operator_common.h"
#include "../../elemwise_op_common.h"

namespace mxnet {
namespace op {

struct NumpyMultinomialParam : public dmlc::Parameter<NumpyMultinomialParam> {
int n;
dmlc::optional<mxnet::Tuple<double>> pvals;
dmlc::optional<mxnet::Tuple<int>> size;
DMLC_DECLARE_PARAMETER(NumpyMultinomialParam) {
DMLC_DECLARE_FIELD(n)
.describe("Number of experiments.");
DMLC_DECLARE_FIELD(pvals)
.set_default(dmlc::optional<mxnet::Tuple<double>>())
.describe("Probabilities of each of the p different outcomes. "
"These should sum to 1 (however, the last element is always assumed to "
"account for the remaining probability, as long as sum(pvals[:-1]) <= 1)"
"Note that this is for internal usage only. "
"This operator will only have either input mx.ndarray or this list of pvals");
DMLC_DECLARE_FIELD(size)
.set_default(dmlc::optional<mxnet::Tuple<int>>())
.describe("Output shape. If the given shape is, "
"e.g., (m, n, k), then m * n * k samples are drawn. "
"Default is None, in which case a single value is returned.");
}
};

inline bool NumpyMultinomialOpShape(const nnvm::NodeAttrs& attrs,
std::vector<TShape> *in_attrs,
std::vector<TShape> *out_attrs) {
const NumpyMultinomialParam& param = nnvm::get<NumpyMultinomialParam>(attrs.parsed);
CHECK_EQ(out_attrs->size(), 1U);

std::vector<dim_t> oshape_vec;
dim_t pvals_length;
if (param.pvals.has_value()) {
CHECK_EQ(in_attrs->size(), 0U);
pvals_length = param.pvals.value().ndim();
} else {
// pvals is from input ndarray
CHECK_EQ(in_attrs->size(), 1U);
const TShape& ishape = (*in_attrs)[0];
// check the input shape is only one dimension
CHECK_EQ(ishape.ndim(), 1U)
<< "object too deep for desired array";
pvals_length = ishape[0];
}
if (param.size.has_value()) {
const mxnet::Tuple<int>& size = param.size.value();
for (int i = 0; i < size.ndim(); ++i) {
oshape_vec.emplace_back(size[i]);
}
}
oshape_vec.emplace_back(pvals_length);
SHAPE_ASSIGN_CHECK(*out_attrs, 0, TShape(oshape_vec));
return out_attrs->at(0).ndim() != 0U;;
}

inline bool NumpyMultinomialOpType(const nnvm::NodeAttrs& attrs,
std::vector<int>* in_attrs,
std::vector<int>* out_attrs) {
const NumpyMultinomialParam& param = nnvm::get<NumpyMultinomialParam>(attrs.parsed);
CHECK_EQ(in_attrs->size(), (param.pvals.has_value()) ? 0U : 1U);
CHECK_EQ(out_attrs->size(), 1U);

(*out_attrs)[0] = mshadow::kInt64;
return true;
}

struct multinomial_kernel {
template<typename DType>
MSHADOW_XINLINE static void Map(int i,
const int num_exp,
const int prob_length,
DType* pvals,
double* uniform,
int64_t* out) {
for (int j = 0; j < num_exp; ++j) {
DType loc = static_cast<DType>(uniform[i * num_exp + j]);
DType acc = 0.0;
bool found = false;
for (int k = 0; k < prob_length; ++k) {
acc += pvals[k];
if (acc > loc) {
found = true;
out[i * prob_length + k] += 1;
break;
}
}
if (!found) {
out[i * prob_length + (prob_length - 1)] += 1;
}
}
}
};

template<typename xpu>
void NumpyMultinomialForward(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<TBlob>& inputs,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& outputs) {
using namespace mshadow;
using namespace mxnet_op;
const NumpyMultinomialParam& param = nnvm::get<NumpyMultinomialParam>(attrs.parsed);
CHECK_EQ(outputs.size(), 1U);
CHECK_EQ(inputs.size(), (param.pvals.has_value()) ? 0U : 1U);

int prob_length = (param.pvals.has_value())
? param.pvals.value().ndim() : inputs[0].shape_[0];
// if intput is [] or size contains 0 dimension
if (prob_length == 0U || outputs[0].shape_.Size() == 0) return;
int num_output = outputs[0].Size() / prob_length;
int num_exp = param.n;
Stream<xpu> *s = ctx.get_stream<xpu>();
Random<xpu, double> *prnd = ctx.requested[0].get_random<xpu, double>(s);
size_t temp_space_ = (param.pvals.has_value())
? num_output * param.n + prob_length : num_output * param.n;
Tensor<xpu, 1, double> temp_tensor =
ctx.requested[1].get_space_typed<xpu, 1, double>(Shape1(temp_space_), s);

prnd->SampleUniform(&temp_tensor, 0, 1);
// set zero for the outputs
Kernel<set_zero, xpu>::Launch(s, outputs[0].Size(), outputs[0].dptr<int64_t>());
if (param.pvals.has_value()) {
// create a tensor to copy the param.pvals tuple to avoid
// error: calling a __host__ function from a __host__ __device__ function is not allowed
// reuse the uniform temp space to create pval tensor
double* pvals_ = temp_tensor.dptr_ + num_output * param.n;
// check if sum of input(pvals) > 1.0
double sum = 0.0;
for (int i = 0; i < prob_length; ++i) {
sum += param.pvals.value()[i];
// copy the tuple to data for later kernel usage
pvals_[i] = param.pvals.value()[i];
CHECK_LE(sum, 1.0)
<< "sum(pvals[:-1]) > 1.0";
}
Kernel<multinomial_kernel, xpu>::Launch(
s, num_output, num_exp, prob_length, pvals_, temp_tensor.dptr_, outputs[0].dptr<int64_t>());
} else {
MSHADOW_TYPE_SWITCH(inputs[0].type_flag_, DType, {
// check if sum of input(pvals) > 1.0
DType sum = DType(0);
DType* input = inputs[0].dptr<DType>();
for (int i = 0; i < prob_length; ++i) {
sum += input[i];
CHECK_LE(sum, 1.0)
<< "sum(pvals[:-1]) > 1.0";
}
Kernel<multinomial_kernel, xpu>::Launch(
s, num_output, num_exp, prob_length,
inputs[0].dptr<DType>(), temp_tensor.dptr_, outputs[0].dptr<int64_t>());
});
}
}

} // namespace op
} // namespace mxnet

#endif // MXNET_OPERATOR_NUMPY_RANDOM_NP_MULTINOMIAL_OP_H_
Loading