Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

fix SoftmaxOutput resource bug #14302

Merged
merged 10 commits into from
Mar 5, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 0 additions & 5 deletions src/operator/softmax_output-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -426,11 +426,6 @@ class SoftmaxOutputProp : public OperatorProperty {
return {{in_data[softmaxout_enum::kData], out_data[softmaxout_enum::kOut]}};
}

std::vector<ResourceRequest> BackwardResource(
const mxnet::ShapeVector &in_shape) const override {
return {ResourceRequest::kTempSpace};
}

Operator* CreateOperator(Context ctx) const override {
LOG(FATAL) << "Not Implemented.";
return NULL;
Expand Down
3 changes: 3 additions & 0 deletions src/operator/softmax_output.cc
Original file line number Diff line number Diff line change
Expand Up @@ -262,6 +262,9 @@ NNVM_REGISTER_OP(_backward_SoftmaxOutput)
.set_attr<nnvm::FInplaceOption>("FInplaceOption", [](const NodeAttrs& attrs){
return std::vector<std::pair<int, int> >{{0, 0}};
})
.set_attr<FResourceRequest>("FResourceRequest", [](const NodeAttrs& n){
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr_parser(ParamParser<SoftmaxOutputParam>)
.set_attr<FCompute>("FCompute<cpu>", SoftmaxOutputGradCompute<cpu>);
} // namespace op
Expand Down
71 changes: 71 additions & 0 deletions tests/python/unittest/test_operator.py
Original file line number Diff line number Diff line change
Expand Up @@ -6496,6 +6496,75 @@ def test_softmax():
check_smoothed_softmax_grad(default_context())


@with_seed()
def test_softmax_output_normalization():
def _softmaxoutput_normalization(multi_output, use_ignore, normalization):
grad_scale = np.random.random()
batch_size = 8
num_labels = 6
H, W = 3, 3
ignore_label = np.random.randint(0, num_labels) if use_ignore else -1

if multi_output:
data_shape = (batch_size, num_labels, H, W)
label_shape = (batch_size, H, W)
else:
data_shape = (batch_size, num_labels)
label_shape = (batch_size, )

data = mx.nd.random.uniform(-1, 1, shape=data_shape)
label = mx.nd.random.randint(
0, num_labels, shape=label_shape).astype('float32')
data.attach_grad()

kwargs = dict(grad_scale=grad_scale,
normalization=normalization, multi_output=multi_output)
if use_ignore:
kwargs.update(use_ignore=True, ignore_label=ignore_label)

with mx.autograd.record():
out = mx.nd.SoftmaxOutput(data=data, label=label, **kwargs)
out.backward(mx.nd.ones_like(data))

exp_data = mx.nd.exp(data)
softmax_data = exp_data / exp_data.sum(1, keepdims=True)
argmax_data = mx.nd.argmax(data, axis=1)

assert_almost_equal(out.asnumpy(), softmax_data.asnumpy())
one_hot_label = mx.nd.one_hot(label, num_labels)
if multi_output:
one_hot_label = one_hot_label.transpose((0, 3, 1, 2))
data_grad = softmax_data - one_hot_label

if use_ignore:
if multi_output:
data_grad *= (label !=
ignore_label).reshape((batch_size, 1, H, W))
else:
data_grad *= (label != ignore_label).reshape((batch_size, 1))

valid_cnt = 1
if normalization == 'batch':
valid_cnt = batch_size
elif normalization == 'valid':
valid_cnt = mx.nd.maximum(1, (label != ignore_label).sum())
scale = grad_scale / valid_cnt

if multi_output:
if normalization != 'valid':
scale /= H * W

data_grad *= scale

assert_almost_equal(data.grad.asnumpy(), data_grad.asnumpy())

for multi_output in [False, True]:
for use_ignore in [False, True]:
for normalization in ['null', 'batch', 'valid']:
_softmaxoutput_normalization(
multi_output, use_ignore, normalization)


@with_seed()
def test_slice():
def test_slice_forward_backward(a, index):
Expand Down Expand Up @@ -6533,6 +6602,7 @@ def test_slice_forward_backward(a, index):
slice_sym = mx.sym.slice(data, begin=[0, None], end=[1, None], step=[2, -1])
check_numeric_gradient(slice_sym, [in_data])


def test_slice_partial_infer():
def check_slice_partial_infer(data, begin, end, step, expected_out_shape):
out = mx.sym.slice(data, begin=begin, end=end, step=step)
Expand All @@ -6555,6 +6625,7 @@ def check_slice_axis_partial_infer(data, axis, begin, end, expected_out_shape):
check_slice_axis_partial_infer(var1, 0, 0, 5, (5, 0))
check_slice_axis_partial_infer(var1, 1, 0, 5, (10, 0))


@with_seed()
def test_float16_min_max():
"""Test for issue: https://github.com/apache/incubator-mxnet/issues/9007"""
Expand Down