Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

ONNX export: broadcast_to, tile ops #13981

Merged
merged 4 commits into from
Feb 5, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
76 changes: 76 additions & 0 deletions python/mxnet/contrib/onnx/mx2onnx/_op_translations.py
Original file line number Diff line number Diff line change
Expand Up @@ -1907,3 +1907,79 @@ def convert_roipooling(node, **kwargs):
name=name
)
return [node]


@mx_op.register("tile")
def convert_tile(node, **kwargs):
"""Map MXNet's Tile operator attributes to onnx's Tile
operator and return the created node.
"""
name, input_nodes, attrs = get_inputs(node, kwargs)

reps_list = convert_string_to_list(attrs["reps"])

initializer = kwargs["initializer"]
reps_shape_np = np.array(reps_list, dtype='int64')
data_type = onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[reps_shape_np.dtype]
dims = np.shape(reps_shape_np)

output_shape_name = "reps_attr_tensor" + str(kwargs["idx"])
tensor_node = onnx.helper.make_tensor_value_info(output_shape_name, data_type, dims)

initializer.append(
onnx.helper.make_tensor(
name=output_shape_name,
data_type=data_type,
dims=dims,
vals=reps_list,
raw=False,
)
)

input_nodes.append(output_shape_name)
tile_node = onnx.helper.make_node(
"Tile",
input_nodes,
[name],
name=name
)

return [tensor_node, tile_node]


@mx_op.register("broadcast_to")
def convert_broadcast_to(node, **kwargs):
"""Map MXNet's broadcast_to operator attributes to onnx's Expand
operator and return the created node.
"""
name, input_nodes, attrs = get_inputs(node, kwargs)

shape_list = convert_string_to_list(attrs["shape"])

initializer = kwargs["initializer"]
output_shape_np = np.array(shape_list, dtype='int64')
data_type = onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[output_shape_np.dtype]
dims = np.shape(output_shape_np)

output_shape_name = "expand_attr_tensor" + str(kwargs["idx"])
tensor_node = onnx.helper.make_tensor_value_info(output_shape_name, data_type, dims)

initializer.append(
onnx.helper.make_tensor(
name=output_shape_name,
data_type=data_type,
dims=dims,
vals=shape_list,
raw=False,
)
)

input_nodes.append(output_shape_name)
expand_node = onnx.helper.make_node(
"Expand",
input_nodes,
[name],
name=name
)

return [tensor_node, expand_node]
20 changes: 19 additions & 1 deletion tests/python-pytest/onnx/test_node.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@
from collections import namedtuple
import numpy as np
import numpy.testing as npt
from onnx import numpy_helper, helper, load_model
from onnx import checker, numpy_helper, helper, load_model
from onnx import TensorProto
from mxnet.test_utils import download
from mxnet.contrib import onnx as onnx_mxnet
Expand Down Expand Up @@ -206,6 +206,18 @@ def test_imports(self):
mxnet_out = bkd_rep.run(inputs)
npt.assert_almost_equal(np_out, mxnet_out, decimal=4)

def test_exports(self):
input_shape = (2,1,3,1)
for test in export_test_cases:
test_name, onnx_name, mx_op, attrs = test
input_sym = mx.sym.var('data')
outsym = mx_op(input_sym, **attrs)
converted_model = onnx_mxnet.export_model(outsym, {}, [input_shape], np.float32,
onnx_file_path=outsym.name + ".onnx")
model = load_model(converted_model)
checker.check_model(model)


# test_case = ("test_case_name", mxnet op, "ONNX_op_name", [input_list], attribute map, MXNet_specific=True/False,
# fix_attributes = {'modify': {mxnet_attr_name: onnx_attr_name},
# 'remove': [attr_name],
Expand Down Expand Up @@ -274,5 +286,11 @@ def test_imports(self):
("test_lpnormalization_ord2", "LpNormalization", [get_rnd([5, 3, 3, 2])], np.linalg.norm, {'ord':2, 'axis':1})
]

# test_case = ("test_case_name", "ONNX_op_name", mxnet_op, attribute map)
export_test_cases = [
("test_expand", "Expand", mx.sym.broadcast_to, {'shape': (2,1,3,1)}),
("test_tile", "Tile", mx.sym.tile, {'reps': (2,3)})
]

if __name__ == '__main__':
unittest.main()