Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Fix BatchNorm converter for CoreML when fix_gamma=True #13557

Merged
merged 1 commit into from
Jan 16, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 7 additions & 2 deletions tools/coreml/converter/_layers.py
Original file line number Diff line number Diff line change
Expand Up @@ -472,18 +472,23 @@ def convert_batchnorm(net, node, module, builder):
inputs = node['inputs']


eps = 1e-3 # Default value of eps for MXNet.
use_global_stats = False # Default value of use_global_stats for MXNet.
eps = 1e-3 # Default value of eps for MXNet.
use_global_stats = False # Default value of use_global_stats for MXNet.
fix_gamma = True # Default value of fix_gamma for MXNet.
attrs = _get_attrs(node)
if 'eps' in attrs:
eps = literal_eval(attrs['eps'])
if 'fix_gamma' in attrs:
fix_gamma = literal_eval(attrs['fix_gamma'])

args, aux = module.get_params()
gamma = args[_get_node_name(net, inputs[1][0])].asnumpy()
beta = args[_get_node_name(net, inputs[2][0])].asnumpy()
mean = aux[_get_node_name(net, inputs[3][0])].asnumpy()
variance = aux[_get_node_name(net, inputs[4][0])].asnumpy()
nb_channels = gamma.shape[0]
if fix_gamma:
gamma.fill(1.)
builder.add_batchnorm(
name=name,
channels=nb_channels,
Expand Down
34 changes: 34 additions & 0 deletions tools/coreml/test/test_mxnet_converter.py
Original file line number Diff line number Diff line change
Expand Up @@ -938,6 +938,40 @@ def test_batch_norm_no_global_stats(self):
name='batch_norm_1')
self._test_mxnet_model(net, input_shape=input_shape, mode='random', delta=1e-2)

def test_batch_norm_with_fix_gamma(self):
""" The gamma will always be an array of ones when fix_gamma=True. The values
of gamma may be changed accidentally if there have been fix_gamma=False before
the final trained model.
"""
np.random.seed(1988)
input_shape = (1, 1, 2, 3)

net = mx.sym.Variable('data')
gamma = mx.sym.Variable('gamma')
beta = mx.sym.Variable('beta')
moving_mean = mx.sym.Variable('moving_mean')
moving_var = mx.sym.Variable('moving_var')
net = mx.symbol.BatchNorm(
data=net,
gamma=gamma,
beta=beta,
moving_mean=moving_mean,
moving_var=moving_var,
fix_gamma=True,
name='batch_norm_1')
self._test_mxnet_model(net, input_shape=input_shape, mode='random', delta=1e-2)

np.random.seed(1988)
net = mx.symbol.BatchNorm(
data=net,
gamma=gamma,
beta=beta,
moving_mean=moving_mean,
moving_var=moving_var,
fix_gamma=False,
name='batch_norm_2')
self._test_mxnet_model(net, input_shape=input_shape, mode='random', delta=1e-2)

def test_pre_processing_args(self):
np.random.seed(1988)
input_shape = (1, 10)
Expand Down