Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

[MXNET-1215] Allow dynamic shape exists in imperative mode #13283

Merged
merged 10 commits into from
Nov 20, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 33 additions & 3 deletions include/mxnet/ndarray.h
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,18 @@ class NDArray {
bool delay_alloc = true, int dtype = mshadow::default_type_flag,
std::vector<int> aux_types = {}, std::vector<TShape> aux_shapes = {},
TShape storage_shape = TShape(mshadow::Shape1(0)));

/*!
* \brief constructs a new dynamic NDArray whose shape is unknown,
* hence the NDArray is inherently lazily created
* \param ctx context of NDArray
* \param dtype data type of this ndarray
*/
explicit NDArray(Context ctx, int dtype = mshadow::default_type_flag) {
ptr_ = std::make_shared<Chunk>(TShape(mshadow::Shape1(0)), ctx, true, dtype);
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why not lazily create Chunk when NDArray::Init() is called? Then we don't need to add Chunk::Init() function.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@zheng-da Do you have any specific consideration about this? I am not sure

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Because TShape(mshadow::Shape1(0)) doesn't mean no shape. It may confuse other developer, and also cause Chunk shape mismatch with NDArray, which may have potential risk.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The main reason we want to create a chunk here is to create the var in the chunk. Originally, I wanted to allow async execution. Now we only allow sync execution in the imperative mode. We probably don't need to create a chunk here.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why this PR is merged without approve? I guess this comment isn't addressed. @junrushao1994 @zheng-da @szha

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@ZhennanQin Sorry I was too hurry. Personally, I think it is okay just to leave it 0-d for now. In the long term, we could support 0-d tensors in a more systematic approach.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@ZhennanQin we discussed it and think it's ok to use 0-dim tensor for now. Actually, we are using 0-dim shape when the shape is unknown in other places, so it should be fine.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

it's true that we should have commented it here as well.

dtype_ = dtype;
storage_type_ = kDefaultStorage;
entry_ = {nullptr, 0, 0};
}
/*!
* \brief constructing a static NDArray that shares data with TBlob
* Use with caution: allocate ONLY ONE NDArray for each TBlob,
Expand Down Expand Up @@ -157,7 +168,20 @@ class NDArray {
: ptr_(std::make_shared<Chunk>(stype, data, aux_data, dev_id)), shape_(shape),
dtype_(data.type_flag_), storage_type_(stype), entry_({nullptr, 0, 0}) {
}

/*!
* \brief initialize the NDArray, assuming it is not assigned a meaningful shape before
* \param shape the shape of the NDArray
*/
void Init(const TShape &shape) {
ptr_->Init(shape, this->dtype_);
this->shape_ = shape;
}
/*!
* \brief set the correct shape of NDArray directly from the storage_shape of its own chunk.
*/
void SetShapeFromChunk() {
shape_ = ptr_->storage_shape;
}
/*
* This indicates whether an array is a view of another array (created by
* reshape or slice). If an array is a view and the the data is stored in
Expand Down Expand Up @@ -960,7 +984,13 @@ class NDArray {
#endif
}
}

/*! \brief initialize the shape and dtype, assuming it is not initialized before. */
void Init(const TShape &shape, int dtype) {
auto size = shape.Size();
storage_shape = shape;
shandle.size = size * mshadow::mshadow_sizeof(dtype);
this->CheckAndAlloc();
}
inline void CheckAndAlloc(const TShape &shape, const std::vector<TShape> &aux_shapes,
int dtype) {
// calculate size, perform allocation
Expand Down
12 changes: 10 additions & 2 deletions src/imperative/imperative.cc
Original file line number Diff line number Diff line change
Expand Up @@ -106,8 +106,16 @@ OpStatePtr Imperative::Invoke(
SetShapeType(ctx, attrs, inputs, outputs, &dispatch_mode);
std::vector<OpReqType> req;
SetWriteInplaceReq(inputs, outputs, &req);

return InvokeOp(ctx, attrs, inputs, outputs, req, dispatch_mode);
OpStatePtr ret = InvokeOp(ctx, attrs, inputs, outputs, req, dispatch_mode);
// the followinng loop is used for finding out the correct shape when some shapes are dynamic
for (size_t i = 0; i < outputs.size(); i++) {
if (outputs[i]->shape().ndim() == 0) {
// the WaitToRead overhead here does not seem to be avoidable
outputs[i]->WaitToRead();
outputs[i]->SetShapeFromChunk();
}
}
return ret;
}

void Imperative::MarkVariables(
Expand Down
17 changes: 11 additions & 6 deletions src/imperative/imperative_utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -117,11 +117,13 @@ inline void SetShapeType(const Context& ctx,
for (auto& i : outputs) {
out_shapes.push_back(i->shape());
}
CHECK(infershape.count(attrs.op))
<< "Operator " << attrs.op->name << " is missing FInferShape attribute";
CHECK(infershape[attrs.op](attrs, &in_shapes, &out_shapes));
CHECK_EQ(out_shapes.size(), outputs.size());

bool is_dynamic_shape_existing = false;
if (!infershape.count(attrs.op)) {
is_dynamic_shape_existing = true;
} else {
CHECK(infershape[attrs.op](attrs, &in_shapes, &out_shapes));
CHECK_EQ(out_shapes.size(), outputs.size());
}
// infer type
std::vector<int>& in_types = ret->arg_types;
in_types.clear();
Expand Down Expand Up @@ -178,7 +180,10 @@ inline void SetShapeType(const Context& ctx,
for (size_t i = 0; i < outputs.size(); ++i) {
NDArrayStorageType storage_type = static_cast<NDArrayStorageType>(out_storage_types[i]);
if (outputs[i]->is_none()) {
if (storage_type == kDefaultStorage) {
if (is_dynamic_shape_existing) {
// once there is dynamic shape somewhere, we could not pre-determine the shape.
*outputs[i] = NDArray(ctx, out_types[i]);
} else if (storage_type == kDefaultStorage) {
*outputs[i] = NDArray(out_shapes[i], ctx, true, out_types[i]);
} else {
*outputs[i] = NDArray(storage_type, out_shapes[i], ctx, true, out_types[i]);
Expand Down
134 changes: 134 additions & 0 deletions src/operator/contrib/boolean_mask-inl.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2018 by Contributors
* \file boolean_mask-inl.h
*/

#ifndef MXNET_OPERATOR_CONTRIB_BOOLEAN_MASK_INL_H_
#define MXNET_OPERATOR_CONTRIB_BOOLEAN_MASK_INL_H_

#include <dmlc/logging.h>
#include <dmlc/parameter.h>
#include <mxnet/operator.h>
#include <mxnet/ndarray.h>
#include <map>
#include <vector>
#include <string>
#include <utility>
#include <algorithm>
#include "../operator_common.h"
#include "../mxnet_op.h"
#include "../tensor/init_op.h"
#include "../mshadow_op.h"
#include "../elemwise_op_common.h"

namespace mxnet {
namespace op {

struct BooleanMaskParam : public dmlc::Parameter<BooleanMaskParam> {
int axis;
DMLC_DECLARE_PARAMETER(BooleanMaskParam) {
DMLC_DECLARE_FIELD(axis).set_default(0)
.describe("An integer that represents the axis in NDArray to mask from.");
}
};

template<typename xpu>
inline void BooleanMaskForward(const nnvm::NodeAttrs& attrs,
const OpContext &ctx,
const std::vector<NDArray> &inputs,
const std::vector<OpReqType> &req,
const std::vector<NDArray> &outputs) {
// TODO(@junrushao1994): This implementation is a proof-of-concept,
// hence very slow actually. Performance should be improved in the future.
CHECK_EQ(inputs.size(), 2U);
CHECK_EQ(outputs.size(), 1U);
const BooleanMaskParam& param = nnvm::get<BooleanMaskParam>(attrs.parsed);
const int axis = param.axis;
const NDArray &data = inputs[0];
const NDArray &idx = inputs[1];
const NDArray &out = outputs[0];
CHECK_EQ(axis, 0) << "Not supported yet";
CHECK_EQ(data.shape()[axis], idx.shape()[0]);
CHECK_EQ(idx.shape().ndim(), 1U);
// count the number of 1s in `idx`, so that we could know the output dimension
size_t valid_num = 0;
MSHADOW_TYPE_SWITCH(idx.dtype(), DType, {
DType* idx_dptr = idx.data().dptr<DType>();
int length = idx.shape()[0];
for (int i = 0; i < length; i++) {
if (idx_dptr[i]) {
++valid_num;
}
}
});
// set the output shape forcefully
TShape s = data.shape();
s[axis] = valid_num;
const_cast<NDArray &>(out).Init(s);
// do the copy
MSHADOW_TYPE_SWITCH(idx.dtype(), DType, {
DType* idx_dptr = idx.data().dptr<DType>();
int length = idx.shape()[0];
mshadow::Stream<xpu> *stream = ctx.get_stream<xpu>();
for (int i = 0, j = 0; i < length; ++i) {
if (idx_dptr[i]) {
NDArray src = data.At(i);
NDArray dst = out.At(j++);
CHECK(src.shape() == dst.shape());
mxnet_op::copy(stream, dst.data(), src.data());
junrushao marked this conversation as resolved.
Show resolved Hide resolved
}
}
});
}

template<typename xpu>
inline void BooleanMaskBackward(const nnvm::NodeAttrs& attrs,
const OpContext &ctx,
const std::vector<NDArray> &inputs,
const std::vector<OpReqType> &req,
const std::vector<NDArray> &outputs) {
CHECK_EQ(inputs.size(), 3U);
CHECK_EQ(outputs.size(), 2U);
// inputs: {ograd, data, idx}
// outputs: {igrad_data, igrad_idx}
const NDArray& ograd = inputs[0];
const NDArray& idx = inputs[2];
const NDArray& igrad_data = outputs[0];
MSHADOW_TYPE_SWITCH(idx.dtype(), DType, {
DType* idx_dptr = idx.data().dptr<DType>();
int length = idx.shape()[0];
mshadow::Stream<xpu> *stream = ctx.get_stream<xpu>();
Fill<false>(stream, igrad_data.data(), req[0], 0);
for (int i = 0, j = 0; i < length; ++i) {
if (idx_dptr[i]) {
NDArray src = ograd.At(j++);
NDArray dst = igrad_data.At(i);
CHECK(src.shape() == dst.shape());
mxnet_op::copy(stream, dst.data(), src.data());
}
}
});
}

} // namespace op
} // namespace mxnet

#endif // MXNET_OPERATOR_CONTRIB_BOOLEAN_MASK_INL_H_
114 changes: 114 additions & 0 deletions src/operator/contrib/boolean_mask.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2018 by Contributors
* \file boolean_mask.cc
*/

#include "./boolean_mask-inl.h"

namespace mxnet {
namespace op {

DMLC_REGISTER_PARAMETER(BooleanMaskParam);


bool BooleanMaskType(const nnvm::NodeAttrs& attrs,
std::vector<int> *in_attrs,
std::vector<int> *out_attrs) {
CHECK_EQ(in_attrs->size(), 2);
CHECK_EQ(out_attrs->size(), 1);
TYPE_ASSIGN_CHECK(*out_attrs, 0, in_attrs->at(0));
TYPE_ASSIGN_CHECK(*in_attrs, 0, out_attrs->at(0));
return out_attrs->at(0) != -1;
}

bool BooleanMaskStorageType(const nnvm::NodeAttrs& attrs,
const int dev_mask,
DispatchMode* dispatch_mode,
std::vector<int> *in_attrs,
std::vector<int> *out_attrs) {
CHECK_EQ(in_attrs->size(), 2);
CHECK_EQ(out_attrs->size(), 1);
for (int &attr : *in_attrs) {
CHECK_EQ(attr, kDefaultStorage) << "Only default storage is supported";
}
for (int &attr : *out_attrs) {
attr = kDefaultStorage;
}
*dispatch_mode = DispatchMode::kFComputeEx;
return true;
}

bool BooleanMaskBackStorageType(const nnvm::NodeAttrs& attrs,
const int dev_mask,
DispatchMode* dispatch_mode,
std::vector<int> *in_attrs,
std::vector<int> *out_attrs) {
CHECK_EQ(in_attrs->size(), 3);
CHECK_EQ(out_attrs->size(), 2);
for (int &attr : *in_attrs) {
CHECK_EQ(attr, kDefaultStorage) << "Only default storage is supported";
}
for (int &attr : *out_attrs) {
attr = kDefaultStorage;
}
for (size_t i = 0; i < out_attrs->size(); i++)
out_attrs->at(i) = kDefaultStorage;
junrushao marked this conversation as resolved.
Show resolved Hide resolved
*dispatch_mode = DispatchMode::kFComputeEx;
return true;
}

NNVM_REGISTER_OP(_contrib_boolean_mask)
.describe(R"code(
junrushao marked this conversation as resolved.
Show resolved Hide resolved
Experimental CPU-only support for boolean masking.
Given an n-d NDArray data, and a 1-d NDArray index,
the operator produces an un-predeterminable shaped n-d NDArray out,
which stands for the rows in x where the corresonding element in index is non-zero.

>>> data = mx.nd.array([[1, 2, 3],[4, 5, 6],[7, 8, 9]])
>>> index = mx.nd.array([0, 1, 0])
>>> out = mx.nd.contrib.boolean_mask(data, index)
>>> out

[[4. 5. 6.]]
<NDArray 1x3 @cpu(0)>

)code" ADD_FILELINE)
.set_attr_parser(ParamParser<BooleanMaskParam>)
.set_num_inputs(2)
.set_num_outputs(1)
.set_attr<nnvm::FInferType>("FInferType", BooleanMaskType)
.set_attr<FComputeEx>("FComputeEx<cpu>", BooleanMaskForward<cpu>)
.set_attr<FInferStorageType>("FInferStorageType", BooleanMaskStorageType)
junrushao marked this conversation as resolved.
Show resolved Hide resolved
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_contrib_boolean_mask"})
.add_argument("data", "NDArray-or-Symbol", "Data")
.add_argument("index", "NDArray-or-Symbol", "Mask")
.add_arguments(BooleanMaskParam::__FIELDS__());

NNVM_REGISTER_OP(_backward_contrib_boolean_mask)
.set_num_inputs(3)
.set_num_outputs(2)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<FInferStorageType>("FInferStorageType", BooleanMaskBackStorageType)
.set_attr<FComputeEx>("FComputeEx<cpu>", BooleanMaskBackward<cpu>)
.add_arguments(BooleanMaskParam::__FIELDS__());

} // namespace op
} // namespace mxnet
18 changes: 18 additions & 0 deletions tests/python/unittest/test_operator.py
Original file line number Diff line number Diff line change
Expand Up @@ -4792,6 +4792,24 @@ def test_index_copy():
assert same(t.grad.asnumpy(), t_grad.asnumpy())
assert same(index.grad.asnumpy(), index_grad.asnumpy())


@with_seed()
def test_boolean_mask():
if default_context().device_type != 'cpu':
return
data = mx.nd.array([[1, 2, 3],[4, 5, 6],[7, 8, 9]])
index = mx.nd.array([0, 1, 0])
data.attach_grad()
with mx.autograd.record():
out = mx.nd.contrib.boolean_mask(data, index)
out.backward()
data.grad.wait_to_read()
expected = np.array([[4, 5, 6]])
expected_grad = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]])
assert same(out.asnumpy(), expected)
assert same(data.grad.asnumpy(), expected_grad)


@with_seed()
def test_div_sqrt_dim():
data_tmp = np.random.normal(0, 1, (5, 10, 8))
Expand Down