Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Set correct update on kvstore flag in dist_device_sync mode (v1.3.x) #13121

Merged
merged 4 commits into from
Nov 7, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 14 additions & 3 deletions python/mxnet/gluon/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -194,14 +194,18 @@ def _init_kvstore(self):

if config['update_on_kvstore'] is not None:
update_on_kvstore = config['update_on_kvstore']

if kvstore:
if self._compression_params:
kvstore.set_gradient_compression(self._compression_params)
self._distributed = 'dist' in kvstore.type
if self._distributed:
# kv.pull(row_sparse_grad) is not supported for dist kvstore
# Captures condition for dist_async, dist_device_sync or based on config for
# update_on_kvstore
update_on_kvstore = self._contains_sparse_weight or self._contains_sparse_grad \
or 'async' in kvstore.type
or 'device' in kvstore.type or 'async' in kvstore.type \
or config['update_on_kvstore']
if update_on_kvstore:
# optimizer preferably needs to be set before init for multiprecision
kvstore.set_optimizer(self._optimizer)
Expand Down Expand Up @@ -269,13 +273,20 @@ def step(self, batch_size, ignore_stale_grad=False):
If true, ignores Parameters with stale gradient (gradient that has not
been updated by `backward` after last step) and skip update.
"""
rescale_grad = self._scale / batch_size
if self._update_on_kvstore and self._distributed and \
self._optimizer.rescale_grad != rescale_grad:
raise UserWarning('Possible change in the `batch_size` from previous `step` detected.' \
'Optimizer gradient normalizing factor will not change w.r.t new batch_size when ' \
'update_on_kvstore=True and when distributed `kvstore` is used.')

self._optimizer.rescale_grad = rescale_grad

if not self._kv_initialized:
self._init_kvstore()
if self._params_to_init:
self._init_params()

self._optimizer.rescale_grad = self._scale / batch_size

self._allreduce_grads()
self._update(ignore_stale_grad)

Expand Down
19 changes: 19 additions & 0 deletions tests/nightly/dist_device_sync_kvstore.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,25 @@ def check_init(kv, cur_keys, cur_shape, device=False):
my_rank = kv.rank
print('worker ' + str(my_rank) + ' is initialized')

def test_gluon_trainer_type():
def check_trainer_kv_update(update_on_kv):
params = mx.gluon.ParameterDict()
x = params.get('x', shape=(10,1), lr_mult=1.0)
params.initialize(ctx=[mx.cpu(0), mx.cpu(1)], init='zeros')
try:
trainer = mx.gluon.Trainer(params, 'sgd', {'learning_rate': 0.1}, kvstore=kv, update_on_kvstore=update_on_kv)
trainer._init_kvstore()
assert trainer._kv_initialized
assert trainer._update_on_kvstore is True
except ValueError:
assert update_on_kv is False

check_trainer_kv_update(False)
check_trainer_kv_update(True)
check_trainer_kv_update(None)
my_rank = kv.rank
print('worker ' + str(my_rank) + ' passed test_gluon_trainer_type')

if __name__ == "__main__":
test_sync_init()
test_sync_push_pull()