Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Fix for flaky test_operator_gpu.test_spatial_transformer_with_type #12557

Merged
merged 1 commit into from
Sep 14, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 13 additions & 10 deletions src/operator/spatial_transformer-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,7 @@ struct SpatialTransformerParam : public dmlc::Parameter<SpatialTransformerParam>
TShape target_shape;
int transform_type;
int sampler_type;
dmlc::optional<bool> cudnn_off;
DMLC_DECLARE_PARAMETER(SpatialTransformerParam) {
int shape[] = {0, 0};
DMLC_DECLARE_FIELD(target_shape).set_default(TShape(shape, shape + 2))
Expand All @@ -62,6 +63,8 @@ struct SpatialTransformerParam : public dmlc::Parameter<SpatialTransformerParam>
.describe("transformation type");
DMLC_DECLARE_FIELD(sampler_type).add_enum("bilinear", st::kBilinear)
.describe("sampling type");
DMLC_DECLARE_FIELD(cudnn_off).set_default(dmlc::optional<bool>())
.describe("whether to turn cudnn off");
}
};

Expand Down Expand Up @@ -101,11 +104,11 @@ class SpatialTransformerOp : public Operator {
}
Copy(grid_dst, workspace, grid_dst.stream_);
for (index_t batch = 0; batch < data.size(0); batch++) {
if (param_.transform_type == st::kAffine) {
// Legacy approach shown here for comparison:
// grid_src[batch] = dot(loc[batch], grid_dst);
linalg_gemm(loc[batch], grid_dst, grid_src[batch], false, false, s);
}
if (param_.transform_type == st::kAffine) {
// Legacy approach shown here for comparison:
// grid_src[batch] = dot(loc[batch], grid_dst);
linalg_gemm(loc[batch], grid_dst, grid_src[batch], false, false, s);
}
}
if (param_.sampler_type == st::kBilinear) {
BilinearSamplingForward(out, data, grid_src);
Expand Down Expand Up @@ -136,11 +139,11 @@ class SpatialTransformerOp : public Operator {
BilinearSamplingBackward(gdata, grid_src, grad, data);
}
for (index_t batch = 0; batch < data.size(0); batch++) {
if (param_.transform_type == st::kAffine) {
// Legacy approach shown here for comparison:
// gloc[batch] = dot(grid_src[batch], grid_dst.T());
linalg_gemm(grid_src[batch], grid_dst, gloc[batch], false, true, s);
}
if (param_.transform_type == st::kAffine) {
// Legacy approach shown here for comparison:
// gloc[batch] = dot(grid_src[batch], grid_dst.T());
linalg_gemm(grid_src[batch], grid_dst, gloc[batch], false, true, s);
}
}
}

Expand Down
7 changes: 6 additions & 1 deletion src/operator/spatial_transformer.cu
Original file line number Diff line number Diff line change
Expand Up @@ -121,6 +121,7 @@ __global__ void BilinearSamplingBackwardKernel(const int i_c, const int i_h,
if (between(top_left_x, 0, i_w-1) && between(top_left_y+1, 0, i_h-1)) {
atomicAdd((g_input + data_index + i_w),
*(grad + grad_index) * (1.0 - top_left_y_w) * top_left_x_w);
bottom_left_v = *(data + data_index + i_w);
}
if (between(top_left_x+1, 0, i_w-1) && between(top_left_y+1, 0, i_h-1)) {
atomicAdd((g_input + data_index + i_w + 1),
Expand Down Expand Up @@ -194,7 +195,11 @@ Operator* CreateOp<gpu>(SpatialTransformerParam param, int dtype) {
Operator *op = NULL;
#if MXNET_USE_CUDNN == 1 && CUDNN_MAJOR >= 5
MSHADOW_REAL_TYPE_SWITCH(dtype, DType, {
op = new CuDNNSpatialTransformerOp<DType>(param);
if (param.cudnn_off.has_value() && param.cudnn_off.value()) {
op = new SpatialTransformerOp<gpu, DType>(param);
} else {
op = new CuDNNSpatialTransformerOp<DType>(param);
}
})
#else
MSHADOW_REAL_TYPE_SWITCH(dtype, DType, {
Expand Down
7 changes: 5 additions & 2 deletions tests/python/gpu/test_operator_gpu.py
Original file line number Diff line number Diff line change
Expand Up @@ -749,7 +749,6 @@ def test_grid_generator_with_type():
check_consistency(sym, ctx_list, grad_req="add")


@unittest.skip("test fails intermittently. temporarily disabled till it gets fixed. https://github.com/apache/incubator-mxnet/issues/11839")
@with_seed()
def test_spatial_transformer_with_type():
data = mx.sym.Variable('data')
Expand All @@ -758,11 +757,15 @@ def test_spatial_transformer_with_type():
loc = mx.sym.Activation(data=loc, act_type='relu')
loc = mx.sym.FullyConnected(data=loc, num_hidden=6)
sym = mx.sym.SpatialTransformer(data=data, loc=loc, target_shape=(10, 10),
transform_type="affine", sampler_type="bilinear")
transform_type="affine", sampler_type="bilinear", cudnn_off=True)
ctx_list = [{'ctx': mx.gpu(0), 'data': (1, 5, 10, 10), 'type_dict': {'data': np.float64}},
{'ctx': mx.cpu(0), 'data': (1, 5, 10, 10), 'type_dict': {'data': np.float64}}]
check_consistency(sym, ctx_list)
check_consistency(sym, ctx_list, grad_req="add")
sym = mx.sym.SpatialTransformer(data=data, loc=loc, target_shape=(10, 10),
transform_type="affine", sampler_type="bilinear", cudnn_off=False)
check_consistency(sym, ctx_list)
check_consistency(sym, ctx_list, grad_req="add")


@with_seed()
Expand Down