-
Notifications
You must be signed in to change notification settings - Fork 6.8k
Change the way NDArrayIter handle the last batch #12285
Changes from 10 commits
ce4ae1c
26a4c58
21d399b
c14b4ef
e8fb568
33290f6
3eb93c5
4ace292
e939b06
21ccec6
353afe7
012a419
68c10f2
12059d4
c3f5b73
9505ed3
fa1b23d
4966e73
2fb14f3
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -38,9 +38,7 @@ | |
from .ndarray.sparse import array as sparse_array | ||
from .ndarray import _ndarray_cls | ||
from .ndarray import array | ||
from .ndarray import concatenate | ||
from .ndarray import arange | ||
from .ndarray.random import shuffle as random_shuffle | ||
from .ndarray import concat | ||
|
||
class DataDesc(namedtuple('DataDesc', ['name', 'shape'])): | ||
"""DataDesc is used to store name, shape, type and layout | ||
|
@@ -601,6 +599,22 @@ class NDArrayIter(DataIter): | |
... | ||
>>> batchidx # Remaining examples are discarded. So, 10/3 batches are created. | ||
3 | ||
>>> dataiter = mx.io.NDArrayIter(data, labels, 3, False, last_batch_handle='roll_over') | ||
>>> batchidx = 0 | ||
>>> for batch in dataiter: | ||
... batchidx += 1 | ||
... | ||
>>> batchidx # Remaining examples are rolled over to the next iteration. | ||
3 | ||
>>> dataiter.reset() | ||
>>> dataiter.next().data[0].asnumpy() | ||
[[[ 36. 37.] | ||
[ 38. 39.]] | ||
[[ 0. 1.] | ||
[ 2. 3.]] | ||
[[ 4. 5.] | ||
[ 6. 7.]]] | ||
(3L, 2L, 2L) | ||
|
||
`NDArrayIter` also supports multiple input and labels. | ||
|
||
|
@@ -633,8 +647,11 @@ class NDArrayIter(DataIter): | |
Only supported if no h5py.Dataset inputs are used. | ||
last_batch_handle : str, optional | ||
How to handle the last batch. This parameter can be 'pad', 'discard' or | ||
'roll_over'. 'roll_over' is intended for training and can cause problems | ||
if used for prediction. | ||
'roll_over'. | ||
If 'pad', the last batch will be padded with data starting from the begining | ||
If 'discard', the last batch will be discarded | ||
If 'roll_over', the remaining elements will be rolled over to the next iteration and | ||
note that it is intended for training and can cause problems if used for prediction. | ||
data_name : str, optional | ||
The data name. | ||
label_name : str, optional | ||
|
@@ -653,28 +670,20 @@ def __init__(self, data, label=None, batch_size=1, shuffle=False, | |
raise NotImplementedError("`NDArrayIter` only supports ``CSRNDArray``" \ | ||
" with `last_batch_handle` set to `discard`.") | ||
|
||
# shuffle data | ||
if shuffle: | ||
tmp_idx = arange(self.data[0][1].shape[0], dtype=np.int32) | ||
self.idx = random_shuffle(tmp_idx, out=tmp_idx).asnumpy() | ||
self.data = _shuffle(self.data, self.idx) | ||
self.label = _shuffle(self.label, self.idx) | ||
else: | ||
self.idx = np.arange(self.data[0][1].shape[0]) | ||
|
||
# batching | ||
if last_batch_handle == 'discard': | ||
new_n = self.data[0][1].shape[0] - self.data[0][1].shape[0] % batch_size | ||
self.idx = self.idx[:new_n] | ||
self.idx = np.arange(self.data[0][1].shape[0]) | ||
self.shuffle = shuffle | ||
self.last_batch_handle = last_batch_handle | ||
self.batch_size = batch_size | ||
self.cursor = -self.batch_size | ||
self.num_data = self.idx.shape[0] | ||
# shuffle | ||
self.reset() | ||
|
||
self.data_list = [x[1] for x in self.data] + [x[1] for x in self.label] | ||
self.num_source = len(self.data_list) | ||
self.num_data = self.idx.shape[0] | ||
assert self.num_data >= batch_size, \ | ||
"batch_size needs to be smaller than data size." | ||
self.cursor = -batch_size | ||
self.batch_size = batch_size | ||
self.last_batch_handle = last_batch_handle | ||
# used for 'roll_over' | ||
self._cache_data = None | ||
self._cache_label = None | ||
|
||
@property | ||
def provide_data(self): | ||
|
@@ -694,74 +703,123 @@ def provide_label(self): | |
|
||
def hard_reset(self): | ||
"""Ignore roll over data and set to start.""" | ||
if self.shuffle: | ||
self._shuffle() | ||
self.cursor = -self.batch_size | ||
self._cache_data = None | ||
self._cache_label = None | ||
|
||
def reset(self): | ||
if self.last_batch_handle == 'roll_over' and self.cursor > self.num_data: | ||
self.cursor = -self.batch_size + (self.cursor%self.num_data)%self.batch_size | ||
"""Resets the iterator to the beginning of the data.""" | ||
if self.shuffle: | ||
self._shuffle() | ||
# the range below indicate the last batch | ||
if self.last_batch_handle == 'roll_over' and \ | ||
self.num_data - self.batch_size < self.cursor < self.num_data: | ||
# (self.cursor - self.num_data) represents the data we have for the last batch | ||
self.cursor = self.cursor - self.num_data - self.batch_size | ||
else: | ||
self.cursor = -self.batch_size | ||
|
||
def iter_next(self): | ||
"""Increments the coursor and check current cursor if exceed num of data.""" | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This doc string does not make sense and has mistakes. What is num of data? |
||
self.cursor += self.batch_size | ||
return self.cursor < self.num_data | ||
|
||
def next(self): | ||
if self.iter_next(): | ||
return DataBatch(data=self.getdata(), label=self.getlabel(), \ | ||
pad=self.getpad(), index=None) | ||
else: | ||
"""Returns the next batch of data.""" | ||
if not self.iter_next(): | ||
raise StopIteration | ||
data = self.getdata() | ||
label = self.getlabel() | ||
# iter should stop when last batch is not complete | ||
if data[0].shape[0] != self.batch_size: | ||
# in this case, cache it for next epoch | ||
self._cache_data = data | ||
self._cache_label = label | ||
raise StopIteration | ||
return DataBatch(data=data, label=label, \ | ||
pad=self.getpad(), index=None) | ||
|
||
def _getdata(self, data_source, start=None, end=None): | ||
"""Load data from underlying arrays.""" | ||
assert start is not None or end is not None, 'should at least specify start or end' | ||
start = start if start is not None else 0 | ||
end = end if end is not None else data_source[0][1].shape[0] | ||
s = slice(start, end) | ||
return [ | ||
x[1][s] | ||
if isinstance(x[1], (np.ndarray, NDArray)) else | ||
# h5py (only supports indices in increasing order) | ||
array(x[1][sorted(self.idx[s])][[ | ||
list(self.idx[s]).index(i) | ||
for i in sorted(self.idx[s]) | ||
]]) for x in data_source | ||
] | ||
|
||
def _getdata(self, data_source): | ||
def _concat(self, first_data, second_data): | ||
"""Helper function to concat two NDArrays.""" | ||
return [ | ||
concat(first_data[0], second_data[0], dim=0) | ||
] | ||
|
||
def _batchify(self, data_source): | ||
"""Load data from underlying arrays, internal use only.""" | ||
assert(self.cursor < self.num_data), "DataIter needs reset." | ||
if self.cursor + self.batch_size <= self.num_data: | ||
return [ | ||
# np.ndarray or NDArray case | ||
x[1][self.cursor:self.cursor + self.batch_size] | ||
if isinstance(x[1], (np.ndarray, NDArray)) else | ||
# h5py (only supports indices in increasing order) | ||
array(x[1][sorted(self.idx[ | ||
self.cursor:self.cursor + self.batch_size])][[ | ||
list(self.idx[self.cursor: | ||
self.cursor + self.batch_size]).index(i) | ||
for i in sorted(self.idx[ | ||
self.cursor:self.cursor + self.batch_size]) | ||
]]) for x in data_source | ||
] | ||
else: | ||
assert self.cursor < self.num_data, 'DataIter needs reset.' | ||
# first batch of next epoch with 'roll_over' | ||
if self.last_batch_handle == 'roll_over' and \ | ||
-self.batch_size < self.cursor < 0: | ||
assert self._cache_data is not None or self._cache_label is not None, \ | ||
'next epoch should have cached data' | ||
cache_data = self._cache_data if self._cache_data is not None else self._cache_label | ||
second_data = self._getdata( | ||
data_source, end=self.cursor + self.batch_size) | ||
if self._cache_data is not None: | ||
self._cache_data = None | ||
else: | ||
self._cache_label = None | ||
return self._concat(cache_data, second_data) | ||
# last batch with 'pad' | ||
elif self.last_batch_handle == 'pad' and \ | ||
self.cursor + self.batch_size > self.num_data: | ||
pad = self.batch_size - self.num_data + self.cursor | ||
return [ | ||
# np.ndarray or NDArray case | ||
concatenate([x[1][self.cursor:], x[1][:pad]]) | ||
if isinstance(x[1], (np.ndarray, NDArray)) else | ||
# h5py (only supports indices in increasing order) | ||
concatenate([ | ||
array(x[1][sorted(self.idx[self.cursor:])][[ | ||
list(self.idx[self.cursor:]).index(i) | ||
for i in sorted(self.idx[self.cursor:]) | ||
]]), | ||
array(x[1][sorted(self.idx[:pad])][[ | ||
list(self.idx[:pad]).index(i) | ||
for i in sorted(self.idx[:pad]) | ||
]]) | ||
]) for x in data_source | ||
] | ||
first_data = self._getdata(data_source, start=self.cursor) | ||
second_data = self._getdata(data_source, end=pad) | ||
return self._concat(first_data, second_data) | ||
# normal case | ||
else: | ||
if self.cursor + self.batch_size < self.num_data: | ||
end_idx = self.cursor + self.batch_size | ||
# get incomplete last batch | ||
else: | ||
end_idx = self.num_data | ||
return self._getdata(data_source, self.cursor, end_idx) | ||
|
||
def getdata(self): | ||
return self._getdata(self.data) | ||
"""Get data.""" | ||
return self._batchify(self.data) | ||
|
||
def getlabel(self): | ||
return self._getdata(self.label) | ||
"""Get label.""" | ||
return self._batchify(self.label) | ||
|
||
def getpad(self): | ||
"""Get pad value of DataBatch.""" | ||
if self.last_batch_handle == 'pad' and \ | ||
self.cursor + self.batch_size > self.num_data: | ||
return self.cursor + self.batch_size - self.num_data | ||
# check the first batch | ||
elif self.last_batch_handle == 'roll_over' and \ | ||
-self.batch_size < self.cursor < 0: | ||
return -self.cursor | ||
else: | ||
return 0 | ||
|
||
def _shuffle(self): | ||
"""Shuffle the data.""" | ||
np.random.shuffle(self.idx) | ||
self.data = _shuffle(self.data, self.idx) | ||
self.label = _shuffle(self.label, self.idx) | ||
|
||
class MXDataIter(DataIter): | ||
"""A python wrapper a C++ data iterator. | ||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -87,82 +87,68 @@ def test_Cifar10Rec(): | |
for i in range(10): | ||
assert(labelcount[i] == 5000) | ||
|
||
|
||
def test_NDArrayIter(): | ||
def _init_NDArrayIter_data(): | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. doc string? |
||
data = np.ones([1000, 2, 2]) | ||
label = np.ones([1000, 1]) | ||
labels = np.ones([1000, 1]) | ||
for i in range(1000): | ||
data[i] = i / 100 | ||
label[i] = i / 100 | ||
dataiter = mx.io.NDArrayIter( | ||
data, label, 128, True, last_batch_handle='pad') | ||
batchidx = 0 | ||
for batch in dataiter: | ||
batchidx += 1 | ||
assert(batchidx == 8) | ||
dataiter = mx.io.NDArrayIter( | ||
data, label, 128, False, last_batch_handle='pad') | ||
batchidx = 0 | ||
labelcount = [0 for i in range(10)] | ||
for batch in dataiter: | ||
label = batch.label[0].asnumpy().flatten() | ||
assert((batch.data[0].asnumpy()[:, 0, 0] == label).all()) | ||
for i in range(label.shape[0]): | ||
labelcount[int(label[i])] += 1 | ||
labels[i] = i / 100 | ||
return data, labels | ||
|
||
for i in range(10): | ||
if i == 0: | ||
assert(labelcount[i] == 124) | ||
else: | ||
assert(labelcount[i] == 100) | ||
def _test_last_batch_handle(data, labels): | ||
idx = 0 | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. why is this being initialized here? It is not needed as you do |
||
last_batch_handle_list = ['pad', 'discard' , 'roll_over'] | ||
labelcount_list = [(124, 100), (100, 96), (100, 96)] | ||
batch_count_list = [8, 7, 7] | ||
|
||
for idx in range(len(last_batch_handle_list)): | ||
dataiter = mx.io.NDArrayIter( | ||
data, labels, 128, False, last_batch_handle=last_batch_handle_list[idx]) | ||
batch_count = 0 | ||
labelcount = [0 for i in range(10)] | ||
for batch in dataiter: | ||
label = batch.label[0].asnumpy().flatten() | ||
assert((batch.data[0].asnumpy()[:, 0, 0] == label).all()), last_batch_handle_list[idx] | ||
for i in range(label.shape[0]): | ||
labelcount[int(label[i])] += 1 | ||
batch_count += 1 | ||
# assert result | ||
assert(labelcount[0] == labelcount_list[idx][0]), last_batch_handle_list[idx] | ||
assert(labelcount[8] == labelcount_list[idx][1]), last_batch_handle_list[idx] | ||
|
||
assert batch_count == batch_count_list[idx] | ||
# shuffle equals True for sanity test | ||
dataiter = mx.io.NDArrayIter( | ||
data, labels, 128, True, last_batch_handle=last_batch_handle_list[idx]) | ||
batch_count = 0 | ||
for _ in dataiter: | ||
batch_count += 1 | ||
assert batch_count == batch_count_list[idx] | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. can we have a test where you verify that the data has indeed been shuffled There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Now I can't come up with a good solution to test if shuffle work. Shuffle testing will make unit test nondeterministic. if you have any idea, I would love to implement that There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Effectively testing shuffling will be like testing a random number generator, which is a very involved problem by itself. We do not have to do that here. What I suggest is to test if we have the same set of elements pre and post shuffling and ensure that they are not in the same order. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I thought there is a tiny chance that the data remain the same after shuffling? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. if there are n elements being shuffled, the chance that the list remains the same after shuffling is There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Thanks for bringing up this issue. As @sandeep-krishnamurthy suggested, I would check if the data points are moved to the right positions based on index array. Within shuffle's implementation, the index array would shuffle first and then we get the data by their shuffled index. |
||
|
||
def test_NDArrayIter(): | ||
data, labels = _init_NDArrayIter_data() | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. please add doc string for this method. same for other methods in this module. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. We don't need to add doc string for the test There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. it would be good to have a couple of comments describing what use-cases are being tested? |
||
_test_last_batch_handle(data, labels) | ||
|
||
def test_NDArrayIter_h5py(): | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. doc string? |
||
if not h5py: | ||
return | ||
|
||
data = np.ones([1000, 2, 2]) | ||
label = np.ones([1000, 1]) | ||
for i in range(1000): | ||
data[i] = i / 100 | ||
label[i] = i / 100 | ||
data, labels = _init_NDArrayIter_data() | ||
|
||
try: | ||
os.remove("ndarraytest.h5") | ||
os.remove('ndarraytest.h5') | ||
except OSError: | ||
pass | ||
with h5py.File("ndarraytest.h5") as f: | ||
f.create_dataset("data", data=data) | ||
f.create_dataset("label", data=label) | ||
|
||
dataiter = mx.io.NDArrayIter( | ||
f["data"], f["label"], 128, True, last_batch_handle='pad') | ||
batchidx = 0 | ||
for batch in dataiter: | ||
batchidx += 1 | ||
assert(batchidx == 8) | ||
|
||
dataiter = mx.io.NDArrayIter( | ||
f["data"], f["label"], 128, False, last_batch_handle='pad') | ||
labelcount = [0 for i in range(10)] | ||
for batch in dataiter: | ||
label = batch.label[0].asnumpy().flatten() | ||
assert((batch.data[0].asnumpy()[:, 0, 0] == label).all()) | ||
for i in range(label.shape[0]): | ||
labelcount[int(label[i])] += 1 | ||
with h5py.File('ndarraytest.h5') as f: | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Good Catch. will implement that |
||
f.create_dataset('data', data=data) | ||
f.create_dataset('label', data=labels) | ||
|
||
_test_last_batch_handle(f['data'], f['label']) | ||
try: | ||
os.remove("ndarraytest.h5") | ||
except OSError: | ||
pass | ||
|
||
for i in range(10): | ||
if i == 0: | ||
assert(labelcount[i] == 124) | ||
else: | ||
assert(labelcount[i] == 100) | ||
|
||
|
||
def test_NDArrayIter_csr(): | ||
# creating toy data | ||
num_rows = rnd.randint(5, 15) | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
how is pad and roll_over different, it is not clear in the documentation? In both it would seem you are taking data from the first batch of off the next epoch and adding it to the current last batch
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Let say data look like this [1,2,3,4,5,6,7,8,9,10] with batch_size 3
pad
would be like [1,2,3],...[7,8,9],[10,1,2], whileroll_over
would be [1,2,3],...[7,8,9] and second iteration would be [10,1,2], [3,4,5], [6,7,8] after calling reset().I've updated example starting from line 610
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yeah, It's so clear with an example.