Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
Merge branch 'master' into hanning
Browse files Browse the repository at this point in the history
  • Loading branch information
gyshi authored Aug 9, 2019
2 parents 14fc78f + a3babc4 commit fa4cc57
Show file tree
Hide file tree
Showing 5 changed files with 335 additions and 2 deletions.
218 changes: 218 additions & 0 deletions src/operator/numpy/np_broadcast_reduce_op.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,218 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2015 by Contributors
* \file broadcast_reduce_op.h
* \brief Function definition of broadcast and reduce operators
*/
#ifndef MXNET_OPERATOR_NUMPY_NP_BROADCAST_REDUCE_OP_H_
#define MXNET_OPERATOR_NUMPY_NP_BROADCAST_REDUCE_OP_H_

#include <algorithm>
#include <vector>
#include "../tensor/broadcast_reduce_op.h"

namespace mxnet {
namespace op {

struct NumpyReduceAxesParam : public dmlc::Parameter<NumpyReduceAxesParam> {
dmlc::optional<mxnet::Tuple<int>> axis;
dmlc::optional<int> dtype;
bool keepdims;
dmlc::optional<double> initial;
DMLC_DECLARE_PARAMETER(NumpyReduceAxesParam) {
DMLC_DECLARE_FIELD(axis)
.set_default(dmlc::optional<mxnet::Tuple<int>>())
.describe("Axis or axes along which a sum is performed. The default, axis=None, will sum "
"all of the elements of the input array. If axis is negative it counts from the "
"last to the first axis.");
DMLC_DECLARE_FIELD(dtype)
.add_enum("float16", mshadow::kFloat16)
.add_enum("float32", mshadow::kFloat32)
.add_enum("float64", mshadow::kFloat64)
.add_enum("int8", mshadow::kInt8)
.add_enum("int32", mshadow::kInt32)
.add_enum("int64", mshadow::kInt64)
.set_default(dmlc::optional<int>())
.describe("The type of the returned array and of the accumulator in which the elements are "
"summed. The dtype of a is used by default unless a has an integer dtype of less "
"precision than the default platform integer. In that case, if a is signed then "
"the platform integer is used while if a is unsigned then an unsigned integer of "
"the same precision as the platform integer is used.");
DMLC_DECLARE_FIELD(keepdims).set_default(false)
.describe("If this is set to `True`, the reduced axes are left "
"in the result as dimension with size one.");
DMLC_DECLARE_FIELD(initial).set_default(dmlc::optional<double>())
.describe("Starting value for the sum.");
}
};

inline TShape NumpyReduceAxesShapeImpl(const TShape& ishape,
const dmlc::optional<mxnet::Tuple<int>>& axis,
bool keepdims) {
// TODO(junwu): improve the logic
// If input is a scalar, output should be a scalar too
if (ishape.ndim() == 0) {
if (axis.has_value()) {
const mxnet::Tuple<int>& axes = axis.value();
if (axes.ndim() > 0) {
CHECK_EQ(axes.ndim(), 1);
CHECK(axes[0] == 0 || axes[0] == -1);
}
}
return TShape(0, -1);
}

// axis=None, do global reduction
if (!axis.has_value()) {
if (keepdims) {
return TShape(ishape.ndim(), 1);
} else {
return TShape(0, -1);
}
}

// axis = (), will return identity(input)
if (axis.value().ndim() == 0) {
return ishape;
}

// axis has value
mxnet::Tuple<int> axes(axis.value());
for (index_t i = 0; i < axes.ndim(); i++) {
if (axes[i] < 0) {
axes[i] += ishape.ndim();
}
}
std::sort(axes.begin(), axes.end());

for (index_t i = 1; i < axes.ndim(); i++) {
CHECK_LT(axes[i-1], axes[i])
<< "Reduction axes have duplicates "
<< axes;
}
CHECK_LT(axes[axes.ndim()-1], ishape.ndim())
<< "Reduction axis " << axes[axes.ndim()-1]
<< " Exceeds input dimensions " << ishape;
CHECK_GE(axes[0], 0)
<< "Reduction axis " << axis.value()
<< " Exceeds input dimensions " << ishape;

TShape oshape;
if (keepdims) {
oshape = TShape(ishape);
} else {
oshape = TShape(ishape.ndim() - axes.ndim(), -1);
}

if (keepdims) {
for (index_t i = 0; i < axes.ndim(); ++i) {
oshape[axes[i]] = 1;
}
} else {
for (index_t i = 0, j = 0, k = 0; i < ishape.ndim(); ++i) {
if (j < axes.ndim() && i == axes[j]) {
++j;
continue;
}
oshape[k++] = ishape[i];
}
}
return oshape;
}

inline bool NumpyReduceAxesShape(const nnvm::NodeAttrs& attrs,
std::vector<TShape> *in_attrs,
std::vector<TShape> *out_attrs) {
CHECK_EQ(in_attrs->size(), 1U);
CHECK_EQ(out_attrs->size(), 1U);
if (!shape_is_known(in_attrs->at(0))) {
return false;
}
const NumpyReduceAxesParam& param = nnvm::get<NumpyReduceAxesParam>(attrs.parsed);
SHAPE_ASSIGN_CHECK(*out_attrs, 0,
NumpyReduceAxesShapeImpl((*in_attrs)[0], param.axis, param.keepdims));
return shape_is_known(out_attrs->at(0));
}

template<bool safe_acc_hint = false>
inline bool NeedSafeAcc(int itype, int otype) {
bool rule = (itype != otype) || (itype != mshadow::kFloat32 && itype != mshadow::kFloat64);
return safe_acc_hint && rule;
}

template<typename xpu, typename reducer, bool safe_acc_hint = false, bool normalize = false,
typename OP = op::mshadow_op::identity>
void NumpyReduceAxesCompute(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<TBlob>& inputs,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& outputs) {
const NumpyReduceAxesParam& param = nnvm::get<NumpyReduceAxesParam>(attrs.parsed);
if (param.initial.has_value()) {
LOG(FATAL) << "initial is not supported yet";
}
if (param.axis.has_value() && param.axis.value().ndim() == 0) {
UnaryOp::IdentityCompute<xpu>(attrs, ctx, inputs, req, outputs);
}
TShape small;
if (param.keepdims) {
small = outputs[0].shape_;
} else {
small = NumpyReduceAxesShapeImpl(inputs[0].shape_, param.axis, true);
}

if (NeedSafeAcc<safe_acc_hint>(inputs[0].type_flag_, outputs[0].type_flag_)) {
ReduceAxesComputeImpl<xpu, reducer, true, normalize, OP>(ctx, inputs, req, outputs, small);
} else {
ReduceAxesComputeImpl<xpu, reducer, false, normalize, OP>(ctx, inputs, req, outputs, small);
}
}

template<typename xpu, bool normalize = false>
inline void NumpyReduceAxesBackwardUseNone(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<TBlob>& inputs,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& outputs) {
using namespace mshadow;
using namespace mshadow::expr;
const NumpyReduceAxesParam& param = nnvm::get<NumpyReduceAxesParam>(attrs.parsed);
TShape small;
if (param.keepdims) {
small = inputs[0].shape_;
} else {
small = NumpyReduceAxesShapeImpl(outputs[0].shape_, param.axis, true);
}

BroadcastComputeImpl<xpu>(attrs, ctx, inputs, req, outputs, small);
if (normalize) {
Stream<xpu> *s = ctx.get_stream<xpu>();
MSHADOW_TYPE_SWITCH(outputs[0].type_flag_, IType, {
Tensor<xpu, 1, IType> igrad = outputs[0].FlatTo1D<xpu, IType>(s);
printf("output size: %lu input_size: %lu\n", outputs[0].Size(), inputs[0].Size());
igrad /= scalar<IType>(outputs[0].Size()/inputs[0].Size());
});
}
}

} // namespace op
} // namespace mxnet
#endif // MXNET_OPERATOR_NUMPY_NP_BROADCAST_REDUCE_OP_H_
78 changes: 78 additions & 0 deletions src/operator/numpy/np_broadcast_reduce_op_value.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2019 by Contributors
* \file np_reduce_op_value.cc
* \brief CPU Implementation of broadcast and reduce functions based on value.
*/

#include "np_broadcast_reduce_op.h"

namespace mxnet {
namespace op {

DMLC_REGISTER_PARAMETER(NumpyReduceAxesParam);

inline bool NumpySumType(const nnvm::NodeAttrs& attrs,
std::vector<int> *in_attrs,
std::vector<int> *out_attrs) {
CHECK_EQ(in_attrs->size(), 1U);
CHECK_EQ(out_attrs->size(), 1U);
const NumpyReduceAxesParam &param = nnvm::get<NumpyReduceAxesParam>(attrs.parsed);

if (param.dtype.has_value()) {
TYPE_ASSIGN_CHECK(*out_attrs, 0, param.dtype.value());
} else {
TYPE_ASSIGN_CHECK(*out_attrs, 0, in_attrs->at(0));
TYPE_ASSIGN_CHECK(*in_attrs, 0, out_attrs->at(0));
}

return out_attrs->at(0) != -1 && in_attrs->at(0) != -1;
}

NNVM_REGISTER_OP(_np_sum)
.describe(R"code()code" ADD_FILELINE)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr_parser(ParamParser<NumpyReduceAxesParam>)
.set_attr<mxnet::FInferShape>("FInferShape", NumpyReduceAxesShape)
.set_attr<nnvm::FInferType>("FInferType", NumpySumType)
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
return std::vector<std::string>{"a"};
})
.add_argument("a", "NDArray-or-Symbol", "The input")
.add_arguments(NumpyReduceAxesParam::__FIELDS__())
.set_attr<FCompute>("FCompute<cpu>", NumpyReduceAxesCompute<cpu, mshadow_op::sum, true>)
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_backward_np_sum"});

NNVM_REGISTER_OP(_backward_np_sum)
.set_num_outputs(1)
.set_attr_parser(ParamParser<NumpyReduceAxesParam>)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_num_inputs(1)
.set_attr<FCompute>("FCompute<cpu>", NumpyReduceAxesBackwardUseNone<cpu>);

} // namespace op
} // namespace mxnet
36 changes: 36 additions & 0 deletions src/operator/numpy/np_broadcast_reduce_op_value.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* Copyright (c) 2019 by Contributors
* \file np_reduce_op_value.cu
* \brief GPU Implementation of reduce functions based on value.
*/
#include "np_broadcast_reduce_op.h"

namespace mxnet {
namespace op {
NNVM_REGISTER_OP(_np_sum)
.set_attr<FCompute>("FCompute<gpu>", NumpyReduceAxesCompute<gpu, mshadow_op::sum, true>);

NNVM_REGISTER_OP(_backward_np_sum)
.set_attr<FCompute>("FCompute<gpu>", NumpyReduceAxesBackwardUseNone<gpu>);

} // namespace op
} // namespace mxnet
1 change: 1 addition & 0 deletions tests/python/gpu/test_operator_gpu.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@
from test_operator import *
from test_numpy_op import *
from test_numpy_ndarray import *
from test_numpy_op import *
from test_optimizer import *
from test_random import *
from test_exc_handling import *
Expand Down
4 changes: 2 additions & 2 deletions tests/python/unittest/test_numpy_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,7 +91,7 @@ def is_int(dtype):
np_out = _np.sum(x.asnumpy(), axis=axis, dtype=acc_type[itype], keepdims=keepdims).astype(dtype)
assert_almost_equal(mx_out.asnumpy(), np_out, rtol=1e-3, atol=1e-5)


@with_seed()
@use_np
def test_np_hanning():
Expand Down Expand Up @@ -121,7 +121,7 @@ def hybrid_forward(self, F, x, *args, **kwargs):
np_out = _np.hanning(M=config)
assert_almost_equal(mx_out.asnumpy(), np_out, rtol=1e-3, atol=1e-5)


if __name__ == '__main__':
import nose
nose.runmodule()

0 comments on commit fa4cc57

Please sign in to comment.