Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
[MXNET-72] Improve sparse.adam_update (#10062)
Browse files Browse the repository at this point in the history
* Bump 1.1 (#192)

* bump

* also update base.h

* revert website changes

* Update index.html

* update news.md (#191)

* Update NEWS.md

* Update README.md

* refactor regression ops to nnvm interface (#9540)

* refactor regression ops

* fix err for instantiation of minus_sign

* remove useless header file init_op.h

* replace with macro and address other comments

* update

* minor revise docs

* add mae test

* Update KEYS

* Update NEWS.md

* fixed links that were missng ndarray folder path (#9618)

* Fixed 4 broken links (#9698)

* Fixed 4 broken links

* fixed pylint for long line disable and 1 broken link

* Update NEWS.md

* Update NOTICE (#9706)

* revert acc changes (#9731)

* Revert "avoid per-batch blocking in metric (#9636)"

This reverts commit 3fe694e.

* Revert "proper flatten in acc (#9619)"

This reverts commit ed823b2.

* Revert "use nd for accuracy calculation (#9583)"

This reverts commit f5f1b91.

* keep doc change

* PGP keys add liuyizhi AT apache.org (#9728)

* Add my key (#9736)

* [REVIEW REQUIRED] Revert PR #9484 & add additional dependency licenses to LICENSE file (#9701)

* Revert "[Review Required] Fixing Licenses: Cleaning up the Top Level LICENSE file (#9484)"

This reverts commit 8930d96.

* Some more LICENSE fixes

* Adding some more packages to the LICENSE file

* Adding dependencies of dependencies

* update navbar model zoo link (#9749)

* update navbar model zoo link

* update

* initial commit

* clean up

* refactor

* fix test
  • Loading branch information
eric-haibin-lin authored Mar 27, 2018
1 parent 88f2bd0 commit f0f745d
Show file tree
Hide file tree
Showing 5 changed files with 196 additions and 52 deletions.
78 changes: 78 additions & 0 deletions benchmark/python/sparse/updater.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

import time
import mxnet as mx
from mxnet.ndarray.sparse import adam_update
import numpy as np
import argparse

mx.random.seed(0)
np.random.seed(0)

parser = argparse.ArgumentParser(description='Benchmark adam updater')
parser.add_argument('--dim-in', type=int, default=240000, help='weight.shape[0]')
parser.add_argument('--dim-out', type=int, default=512, help='weight.shape[1]')
parser.add_argument('--nnr', type=int, default=5000, help='grad.indices.shape[0]')
parser.add_argument('--repeat', type=int, default=1000, help='num repeat')
parser.add_argument('--dense-grad', action='store_true',
help='if set to true, both gradient and weight are dense.')
parser.add_argument('--dense-state', action='store_true',
help='if set to true, states are dense, indicating standard update')
parser.add_argument('--cpu', action='store_true')


args = parser.parse_args()
dim_in = args.dim_in
dim_out = args.dim_out
nnr = args.nnr
ctx = mx.cpu() if args.cpu else mx.gpu()

ones = mx.nd.ones((dim_in, dim_out), ctx=ctx)

if not args.dense_grad:
weight = ones.tostype('row_sparse')
indices = np.arange(dim_in)
np.random.shuffle(indices)
indices = np.unique(indices[:nnr])
indices = mx.nd.array(indices, ctx=ctx)
grad = mx.nd.sparse.retain(weight, indices)
else:
weight = ones.copy()
grad = ones.copy()

if args.dense_state:
mean = ones.copy()
else:
mean = ones.tostype('row_sparse')

var = mean.copy()

# warmup
for i in range(10):
adam_update(weight, grad, mean, var, out=weight, lr=1, wd=0, beta1=0.9,
beta2=0.99, rescale_grad=0.5, epsilon=1e-8)
weight.wait_to_read()

# measure speed
a = time.time()
for i in range(args.repeat):
adam_update(weight, grad, mean, var, out=weight, lr=1, wd=0, beta1=0.9,
beta2=0.99, rescale_grad=0.5, epsilon=1e-8)
weight.wait_to_read()
b = time.time()
print(b - a)
78 changes: 39 additions & 39 deletions src/operator/optimizer_op-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -749,14 +749,17 @@ inline void AdamUpdate(const nnvm::NodeAttrs& attrs,
});
}

template<int req, typename xpu>
struct AdamDnsRspDnsKernel;

/*!
* Note: this kernel performs sparse adam update. For each row-slice in row_sparse
* gradient, it finds the corresponding elements in weight, mean and var and performs
* the update.
* The kernel assumes dense weight/mean/var, and row_sparse gradient
*/
template<int req>
struct AdamDnsRspDnsKernel {
struct AdamDnsRspDnsKernel<req, cpu> {
template<typename DType, typename IType>
MSHADOW_XINLINE static void Map(int i, const nnvm::dim_t row_length, DType* out_data,
DType* mean_data, DType* var_data, const DType* weight_data, const IType* grad_idx,
Expand Down Expand Up @@ -788,6 +791,33 @@ struct AdamDnsRspDnsKernel {
};


template<int req>
struct AdamDnsRspDnsKernel<req, gpu> {
template<typename DType, typename IType>
MSHADOW_XINLINE static void Map(int i, const nnvm::dim_t row_length, DType* out_data,
DType* mean_data, DType* var_data, const DType* weight_data, const IType* grad_idx,
const DType* grad_data, const DType clip_gradient, const DType beta1, const DType beta2,
const DType lr, const DType wd, const DType epsilon, const DType rescale_grad) {
using nnvm::dim_t;
using namespace mshadow_op;
const dim_t row_id = i / row_length;
const dim_t col_id = i % row_length;
const dim_t row_offset = grad_idx[row_id] * row_length;
// index in data/mean/var
const dim_t data_i = row_offset + col_id;
// index in grad
DType grad_rescaled = grad_data[i] * rescale_grad + weight_data[data_i] * wd;
if (clip_gradient >= 0.0f) {
grad_rescaled = clip::Map(grad_rescaled, clip_gradient);
}
mean_data[data_i] = beta1 * mean_data[data_i] + (1.f - beta1) * grad_rescaled;
var_data[data_i] = beta2 * var_data[data_i] +
(1.f - beta2) * grad_rescaled * grad_rescaled;
KERNEL_ASSIGN(out_data[data_i], req, weight_data[data_i] - lr * mean_data[data_i] /
(square_root::Map(var_data[data_i]) + epsilon));
}
};

template<typename xpu>
inline void AdamUpdateDnsRspDnsImpl(const AdamParam& param,
const OpContext& ctx,
Expand Down Expand Up @@ -817,8 +847,12 @@ inline void AdamUpdateDnsRspDnsImpl(const AdamParam& param,
DType* out_data = out->dptr<DType>();
nnvm::dim_t num_rows = grad.aux_shape(kIdx)[0];
const auto row_length = weight.shape_.ProdShape(1, weight.ndim());
Kernel<AdamDnsRspDnsKernel<req_type>, xpu>::Launch(s, num_rows, row_length,
out_data, mean_data, var_data, weight_data, grad_idx, grad_val,
size_t num_threads = num_rows;
if (std::is_same<xpu, gpu>::value) {
num_threads = num_rows * row_length;
}
Kernel<AdamDnsRspDnsKernel<req_type, xpu>, xpu>::Launch(s, num_threads,
row_length, out_data, mean_data, var_data, weight_data, grad_idx, grad_val,
static_cast<DType>(param.clip_gradient), static_cast<DType>(param.beta1),
static_cast<DType>(param.beta2), static_cast<DType>(param.lr),
static_cast<DType>(param.wd), static_cast<DType>(param.epsilon),
Expand Down Expand Up @@ -858,42 +892,8 @@ inline void AdamUpdateRspRspRspImpl(const AdamParam& param,
var.data(), req, &out_blob);
}

template<int req>
struct AdamStdDnsRspDnsKernel {
template<typename DType, typename IType, typename RType>
MSHADOW_XINLINE static void Map(int i, const nnvm::dim_t row_length, DType* out_data,
DType* mean_data, DType* var_data, const DType* weight_data, const IType* grad_idx,
const DType* grad_data, const RType* prefix_sum, const DType clip_gradient,
const DType beta1, const DType beta2, const DType lr, const DType wd,
const DType epsilon, const DType rescale_grad) {
using namespace mshadow_op;
const bool non_zero = (i == 0) ? prefix_sum[0] > 0
: prefix_sum[i] > prefix_sum[i-1];

const index_t row_i = i * row_length;
const RType grad_i = (prefix_sum[i]-1) * row_length;
for (index_t j = 0; j < row_length; j++) {
const index_t data_i = row_i + j;
const DType grad_rescaled = non_zero ? static_cast<DType>(
grad_data[grad_i + j] * rescale_grad +
weight_data[data_i] * wd)
: static_cast<DType>(weight_data[data_i] * wd);
if (clip_gradient >= 0.0f) {
mean_data[data_i] = beta1 * mean_data[data_i] + (1.f - beta1) *
clip::Map(grad_rescaled, clip_gradient);
var_data[data_i] = beta2 * var_data[data_i] + (1.f - beta2) * square::Map(
clip::Map(grad_rescaled, clip_gradient));
} else {
mean_data[data_i] = beta1 * mean_data[data_i] + (1.f - beta1) * grad_rescaled;
var_data[data_i] = beta2 * var_data[data_i] +
(1.f - beta2) * square::Map(grad_rescaled);
}
KERNEL_ASSIGN(out_data[data_i], req, weight_data[data_i] - lr * mean_data[data_i] /
(square_root::Map(var_data[data_i]) + epsilon));
}
}
};

template<int req, typename xpu>
struct AdamStdDnsRspDnsKernel;

template<typename xpu>
void AdamStdUpdateDnsRspDnsImpl(const AdamParam& param,
Expand Down
39 changes: 38 additions & 1 deletion src/operator/optimizer_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -149,6 +149,43 @@ void SGDMomStdUpdateDnsRspDnsImpl<cpu>(const SGDMomParam& param,
});
}

template<int req>
struct AdamStdDnsRspDnsKernel<req, cpu> {
template<typename DType, typename IType, typename RType>
MSHADOW_XINLINE static void Map(int i, const nnvm::dim_t row_length, DType* out_data,
DType* mean_data, DType* var_data, const DType* weight_data, const IType* grad_idx,
const DType* grad_data, const RType* prefix_sum, const DType clip_gradient,
const DType beta1, const DType beta2, const DType lr, const DType wd,
const DType epsilon, const DType rescale_grad) {
using namespace mshadow_op;
const bool non_zero = (i == 0) ? prefix_sum[0] > 0
: prefix_sum[i] > prefix_sum[i-1];

const index_t row_i = i * row_length;
const RType grad_i = (prefix_sum[i]-1) * row_length;
for (index_t j = 0; j < row_length; j++) {
const index_t data_i = row_i + j;
const DType grad_rescaled = non_zero ? static_cast<DType>(
grad_data[grad_i + j] * rescale_grad +
weight_data[data_i] * wd)
: static_cast<DType>(weight_data[data_i] * wd);
if (clip_gradient >= 0.0f) {
mean_data[data_i] = beta1 * mean_data[data_i] + (1.f - beta1) *
clip::Map(grad_rescaled, clip_gradient);
var_data[data_i] = beta2 * var_data[data_i] + (1.f - beta2) * square::Map(
clip::Map(grad_rescaled, clip_gradient));
} else {
mean_data[data_i] = beta1 * mean_data[data_i] + (1.f - beta1) * grad_rescaled;
var_data[data_i] = beta2 * var_data[data_i] +
(1.f - beta2) * square::Map(grad_rescaled);
}
KERNEL_ASSIGN(out_data[data_i], req, weight_data[data_i] - lr * mean_data[data_i] /
(square_root::Map(var_data[data_i]) + epsilon));
}
}
};


template<>
void AdamStdUpdateDnsRspDnsImpl<cpu>(const AdamParam& param,
const OpContext& ctx,
Expand Down Expand Up @@ -194,7 +231,7 @@ void AdamStdUpdateDnsRspDnsImpl<cpu>(const AdamParam& param,
}
}

Kernel<AdamStdDnsRspDnsKernel<req_type>, cpu>::Launch(s, num_rows, row_length,
Kernel<AdamStdDnsRspDnsKernel<req_type, cpu>, cpu>::Launch(s, num_rows, row_length,
out_data, mean_data, var_data, weight_data, grad_idx, grad_val, prefix_sum,
static_cast<DType>(param.clip_gradient), static_cast<DType>(param.beta1),
static_cast<DType>(param.beta2), static_cast<DType>(param.lr),
Expand Down
37 changes: 33 additions & 4 deletions src/operator/optimizer_op.cu
Original file line number Diff line number Diff line change
Expand Up @@ -94,6 +94,35 @@ void SGDMomStdUpdateDnsRspDnsImpl<gpu>(const SGDMomParam& param,
});
}

template<int req>
struct AdamStdDnsRspDnsKernel<req, gpu> {
template<typename DType, typename IType, typename RType>
MSHADOW_XINLINE static void Map(int i, const nnvm::dim_t row_length, DType* out_data,
DType* mean_data, DType* var_data, const DType* weight_data, const IType* grad_idx,
const DType* grad_data, const RType* prefix_sum, const DType clip_gradient,
const DType beta1, const DType beta2, const DType lr, const DType wd,
const DType epsilon, const DType rescale_grad) {
using namespace mshadow_op;
using nnvm::dim_t;
const dim_t row_id = i / row_length;
const dim_t col_id = i % row_length;
const bool non_zero = (row_id == 0) ? prefix_sum[0] > 0
: prefix_sum[row_id] > prefix_sum[row_id - 1];
const RType grad_offset = (prefix_sum[row_id] - 1) * row_length + col_id;
DType grad_rescaled = non_zero ? static_cast<DType>(grad_data[grad_offset] * rescale_grad
+ weight_data[i] * wd)
: static_cast<DType>(weight_data[i] * wd);
if (clip_gradient >= 0.0f) {
grad_rescaled = clip::Map(grad_rescaled, clip_gradient);
}
mean_data[i] = beta1 * mean_data[i] + (1.f - beta1) * grad_rescaled;
var_data[i] = beta2 * var_data[i] +
(1.f - beta2) * square::Map(grad_rescaled);
KERNEL_ASSIGN(out_data[i], req, weight_data[i] - lr * mean_data[i] /
(square_root::Map(var_data[i]) + epsilon));
}
};

template<>
void AdamStdUpdateDnsRspDnsImpl<gpu>(const AdamParam& param,
const OpContext& ctx,
Expand Down Expand Up @@ -122,8 +151,8 @@ void AdamStdUpdateDnsRspDnsImpl<gpu>(const AdamParam& param,
DType* mean_data = mean.dptr<DType>();
DType* var_data = var.dptr<DType>();
DType* out_data = out->dptr<DType>();
nnvm::dim_t num_rows = weight.shape_[0];
nnvm::dim_t row_length = weight.shape_.ProdShape(1, weight.ndim());
const nnvm::dim_t num_rows = weight.shape_[0];
const nnvm::dim_t row_length = weight.shape_.ProdShape(1, weight.ndim());
nnvm::dim_t* prefix_sum = NULL;
void* d_temp_storage = NULL;
size_t temp_storage_bytes = 0;
Expand Down Expand Up @@ -152,8 +181,8 @@ void AdamStdUpdateDnsRspDnsImpl<gpu>(const AdamParam& param,
Stream<gpu>::GetStream(s));
}

Kernel<AdamStdDnsRspDnsKernel<req_type>, gpu>::Launch(s, num_rows, row_length,
out_data, mean_data, var_data, weight_data, grad_idx, grad_val, prefix_sum,
Kernel<AdamStdDnsRspDnsKernel<req_type, gpu>, gpu>::Launch(s, weight.shape_.Size(),
row_length, out_data, mean_data, var_data, weight_data, grad_idx, grad_val, prefix_sum,
static_cast<DType>(param.clip_gradient), static_cast<DType>(param.beta1),
static_cast<DType>(param.beta2), static_cast<DType>(param.lr),
static_cast<DType>(param.wd), static_cast<DType>(param.epsilon),
Expand Down
16 changes: 8 additions & 8 deletions tests/python/unittest/test_optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -543,13 +543,13 @@ def test_ftml():
class PyAdam(mx.optimizer.Optimizer):
"""python reference implemenation of adam"""
def __init__(self, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8,
decay_factor=(1 - 1e-8), sparse_update=False, **kwargs):
decay_factor=(1 - 1e-8), lazy_update=False, **kwargs):
super(PyAdam, self).__init__(learning_rate=learning_rate, **kwargs)
self.beta1 = beta1
self.beta2 = beta2
self.epsilon = epsilon
self.decay_factor = decay_factor
self.sparse_update = sparse_update
self.lazy_update = lazy_update

def create_state(self, index, weight):
"""Create additional optimizer state: mean, variance
Expand Down Expand Up @@ -595,7 +595,7 @@ def update(self, index, weight, grad, state):
# check row slices of all zeros
all_zeros = mx.test_utils.almost_equal(grad[row].asnumpy(), np.zeros_like(grad[row].asnumpy()))
# skip zeros during sparse update
if all_zeros and self.sparse_update:
if all_zeros and self.lazy_update:
continue
grad[row] = grad[row] * self.rescale_grad + wd * weight[row]
# clip gradients
Expand Down Expand Up @@ -638,7 +638,7 @@ def test_adam():
compare_optimizer(opt1(**kwarg), opt2(**kwarg), shape, dtype,
rtol=1e-4, atol=2e-5)
# atol 2e-5 needed to pass with seed 781809840
compare_optimizer(opt1(sparse_update=True, **kwarg), opt2(**kwarg), shape,
compare_optimizer(opt1(lazy_update=True, **kwarg), opt2(**kwarg), shape,
dtype, w_stype='row_sparse', g_stype='row_sparse',
rtol=1e-4, atol=2e-5)
compare_optimizer(opt1(**kwarg), opt2(lazy_update=False, **kwarg), shape,
Expand Down Expand Up @@ -883,12 +883,12 @@ class PyFtrl(mx.optimizer.Optimizer):
\\eta_{t,i} = \\frac{learningrate}{\\beta+\\sqrt{\\sum_{s=1}^tg_{s,i}^t}}
"""

def __init__(self, lamda1=0.01, learning_rate=0.1, beta=1, sparse_update=False, **kwargs):
def __init__(self, lamda1=0.01, learning_rate=0.1, beta=1, lazy_update=False, **kwargs):
super(PyFtrl, self).__init__(**kwargs)
self.lamda1 = lamda1
self.beta = beta
self.lr = learning_rate
self.sparse_update = sparse_update
self.lazy_update = lazy_update

def create_state(self, index, weight):
return (mx.nd.zeros(weight.shape, weight.context, dtype=weight.dtype), # dn
Expand All @@ -903,7 +903,7 @@ def update(self, index, weight, grad, state):
dn, n = state
for row in range(num_rows):
all_zeros = mx.test_utils.almost_equal(grad[row].asnumpy(), np.zeros_like(grad[row].asnumpy()))
if all_zeros and self.sparse_update:
if all_zeros and self.lazy_update:
continue
grad[row] = grad[row] * self.rescale_grad
if self.clip_gradient is not None:
Expand Down Expand Up @@ -933,7 +933,7 @@ def test_ftrl():
{'clip_gradient': 0.5, 'wd': 0.07, 'lamda1': 1.0}]
for kwarg in kwargs:
compare_optimizer(opt1(**kwarg), opt2(**kwarg), shape, np.float32)
compare_optimizer(opt1(sparse_update=True, **kwarg), opt2(**kwarg), shape,
compare_optimizer(opt1(lazy_update=True, **kwarg), opt2(**kwarg), shape,
np.float32, w_stype='row_sparse', g_stype='row_sparse')

@with_seed(1234)
Expand Down

0 comments on commit f0f745d

Please sign in to comment.