Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
numpy linspace
Browse files Browse the repository at this point in the history
  • Loading branch information
stu1130 committed Aug 12, 2019
1 parent c3f5eea commit e26f58d
Show file tree
Hide file tree
Showing 5 changed files with 331 additions and 3 deletions.
100 changes: 99 additions & 1 deletion python/mxnet/ndarray/numpy/_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,8 +24,9 @@
from ...util import set_module
from ...context import current_context
from . import _internal as _npi
from ..ndarray import NDArray

__all__ = ['zeros', 'ones', 'add', 'subtract', 'multiply', 'divide', 'mod', 'power', 'tensordot']
__all__ = ['zeros', 'ones', 'add', 'subtract', 'multiply', 'divide', 'mod', 'power', 'tensordot', 'linspace']


@set_module('mxnet.ndarray.numpy')
Expand Down Expand Up @@ -364,3 +365,100 @@ def tensordot(a, b, axes=2):
raise ValueError('Axes length mismatch')

return _npi.tensordot(a, b, a_axes_summed, b_axes_summed)


def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0, ctx=None): # pylint: disable=too-many-arguments
r"""
Return evenly spaced numbers over a specified interval.
Returns num evenly spaced samples, calculated over the interval [start, stop].
The endpoint of the interval can optionally be excluded.
Parameters
----------
start : real number
The starting value of the sequence.
stop : real number
The end value of the sequence, unless endpoint is set to False. In
that case, the sequence consists of all but the last of num + 1
evenly spaced samples, so that stop is excluded. Note that the step
size changes when endpoint is False.
num : int, optional
Number of samples to generate. Default is 50. Must be non-negative.
endpoint : bool, optional
If True, stop is the last sample. Otherwise, it is not included.
Default is True.
retstep : bool, optional
If True, return (samples, step), where step is the spacing between samples.
dtype : dtype, optional
The type of the output array. If dtype is not given, infer the data
type from the other input arguments.
axis : int, optional
The axis in the result to store the samples. Relevant only if start or
stop are array-like. By default (0), the samples will be along a new
axis inserted at the beginning. Use -1 to get an axis at the end.
Returns
-------
samples : ndarray
There are num equally spaced samples in the closed interval
`[start, stop]` or the half-open interval `[start, stop)`
(depending on whether endpoint is True or False).
step : float, optional
Only returned if retstep is True
Size of spacing between samples.
See Also
--------
arange : Similar to `linspace`, but uses a step size (instead of the
number of samples).
Examples
--------
>>> np.linspace(2.0, 3.0, num=5)
array([2. , 2.25, 2.5 , 2.75, 3. ])
>>> np.linspace(2.0, 3.0, num=5, endpoint=False)
array([2. , 2.2, 2.4, 2.6, 2.8])
>>> np.linspace(2.0, 3.0, num=5, retstep=True)
(array([2. , 2.25, 2.5 , 2.75, 3. ]), 0.25)
Graphical illustration:
>>> import matplotlib.pyplot as plt
>>> N = 8
>>> y = np.zeros(N)
>>> x1 = np.linspace(0, 10, N, endpoint=True)
>>> x2 = np.linspace(0, 10, N, endpoint=False)
>>> plt.plot(x1.asnumpy(), y.asnumpy(), 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(x2.asnumpy(), (y + 0.5).asnumpy(), 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.ylim([-0.5, 1])
(-0.5, 1)
>>> plt.show()
Notes
-----
This function differs from the original `numpy.linspace
<https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html>`_ in
the following aspects:
- `start` and `stop` do not support list, numpy ndarray and mxnet ndarray
- axis could only be 0
- There could be an additional `ctx` argument to specify the device, e.g. the i-th
GPU.
"""
if isinstance(start, (list, _np.ndarray, NDArray)) or \
isinstance(stop, (list, _np.ndarray, NDArray)):
raise NotImplementedError('start and stop only support int')
if axis != 0:
raise NotImplementedError("the function only support axis 0")
if ctx is None:
ctx = current_context()
if retstep:
step = (stop - start) / (num - 1)
return _npi.linspace(start=start, stop=stop, num=num, endpoint=endpoint, ctx=ctx, dtype=dtype), step
else:
return _npi.linspace(start=start, stop=stop, num=num, endpoint=endpoint, ctx=ctx, dtype=dtype)
88 changes: 87 additions & 1 deletion python/mxnet/numpy/multiarray.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@
from ..ndarray.numpy import _internal as _npi

__all__ = ['ndarray', 'empty', 'array', 'zeros', 'ones', 'add', 'subtract', 'multiply', 'divide',
'mod', 'power', 'tensordot']
'mod', 'power', 'tensordot', 'linspace']


# This function is copied from ndarray.py since pylint
Expand Down Expand Up @@ -1606,3 +1606,89 @@ def tensordot(a, b, axes=2):
[ 4928., 5306.]])
"""
return _mx_nd_np.tensordot(a, b, axes)


def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0, ctx=None): # pylint: disable=too-many-arguments
r"""
Return evenly spaced numbers over a specified interval.
Returns num evenly spaced samples, calculated over the interval [start, stop].
The endpoint of the interval can optionally be excluded.
Parameters
----------
start : real number
The starting value of the sequence.
stop : real number
The end value of the sequence, unless endpoint is set to False. In
that case, the sequence consists of all but the last of num + 1
evenly spaced samples, so that stop is excluded. Note that the step
size changes when endpoint is False.
num : int, optional
Number of samples to generate. Default is 50. Must be non-negative.
endpoint : bool, optional
If True, stop is the last sample. Otherwise, it is not included.
Default is True.
retstep : bool, optional
If True, return (samples, step), where step is the spacing between samples.
dtype : dtype, optional
The type of the output array. If dtype is not given, infer the data
type from the other input arguments.
axis : int, optional
The axis in the result to store the samples. Relevant only if start or
stop are array-like. By default (0), the samples will be along a new
axis inserted at the beginning. Use -1 to get an axis at the end.
Returns
-------
samples : ndarray
There are num equally spaced samples in the closed interval
`[start, stop]` or the half-open interval `[start, stop)`
(depending on whether endpoint is True or False).
step : float, optional
Only returned if retstep is True
Size of spacing between samples.
See Also
--------
arange : Similar to `linspace`, but uses a step size (instead of the
number of samples).
Examples
--------
>>> np.linspace(2.0, 3.0, num=5)
array([2. , 2.25, 2.5 , 2.75, 3. ])
>>> np.linspace(2.0, 3.0, num=5, endpoint=False)
array([2. , 2.2, 2.4, 2.6, 2.8])
>>> np.linspace(2.0, 3.0, num=5, retstep=True)
(array([2. , 2.25, 2.5 , 2.75, 3. ]), 0.25)
Graphical illustration:
>>> import matplotlib.pyplot as plt
>>> N = 8
>>> y = np.zeros(N)
>>> x1 = np.linspace(0, 10, N, endpoint=True)
>>> x2 = np.linspace(0, 10, N, endpoint=False)
>>> plt.plot(x1.asnumpy(), y.asnumpy(), 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(x2.asnumpy(), (y + 0.5).asnumpy(), 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.ylim([-0.5, 1])
(-0.5, 1)
>>> plt.show()
Notes
-----
This function differs from the original `numpy.linspace
<https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html>`_ in
the following aspects:
- `start` and `stop` do not support list, numpy ndarray and mxnet ndarray
- axis could only be 0
- There could be an additional `ctx` argument to specify the device, e.g. the i-th
GPU.
"""
return _mx_nd_np.linspace(start, stop, num, endpoint, retstep, dtype, axis, ctx)
75 changes: 74 additions & 1 deletion python/mxnet/symbol/numpy/_symbol.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@
from .._internal import _set_np_symbol_class
from . import _internal as _npi

__all__ = ['zeros', 'ones', 'add', 'subtract', 'multiply', 'divide', 'mod', 'power', 'tensordot']
__all__ = ['zeros', 'ones', 'add', 'subtract', 'multiply', 'divide', 'mod', 'power', 'tensordot', 'linspace']


def _num_outputs(sym):
Expand Down Expand Up @@ -1065,4 +1065,77 @@ def tensordot(a, b, axes=2):
return _npi.tensordot(a, b, a_axes_summed, b_axes_summed)


def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0, ctx=None): # pylint: disable=too-many-arguments
r"""
Return evenly spaced numbers over a specified interval.
Returns num evenly spaced samples, calculated over the interval [start, stop].
The endpoint of the interval can optionally be excluded.
Parameters
----------
start : real number
The starting value of the sequence.
stop : real number
The end value of the sequence, unless endpoint is set to False. In
that case, the sequence consists of all but the last of num + 1
evenly spaced samples, so that stop is excluded. Note that the step
size changes when endpoint is False.
num : int, optional
Number of samples to generate. Default is 50. Must be non-negative.
endpoint : bool, optional
If True, stop is the last sample. Otherwise, it is not included.
Default is True.
retstep : bool, optional
If True, return (samples, step), where step is the spacing between samples.
dtype : dtype, optional
The type of the output array. If dtype is not given, infer the data
type from the other input arguments.
axis : int, optional
The axis in the result to store the samples. Relevant only if start or
stop are array-like. By default (0), the samples will be along a new
axis inserted at the beginning. Use -1 to get an axis at the end.
Returns
-------
samples : _Symbol
There are num equally spaced samples in the closed interval
`[start, stop]` or the half-open interval `[start, stop)`
(depending on whether endpoint is True or False).
step : float, optional
Only returned if retstep is True
Size of spacing between samples.
See Also
--------
arange : Similar to `linspace`, but uses a step size (instead of the
number of samples).
Notes
-----
This function differs from the original `numpy.linspace
<https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html>`_ in
the following aspects:
- `start` and `stop` do not support list, numpy ndarray and mxnet ndarray
- axis could only be 0
- There could be an additional `ctx` argument to specify the device, e.g. the i-th
GPU.
"""
if isinstance(start, (list, _np.ndarray)) or \
isinstance(stop, (list, _np.ndarray)):
raise NotImplementedError('start and stop only support int')
if axis != 0:
raise NotImplementedError("the function only support axis 0")
if ctx is None:
ctx = current_context()
if retstep:
step = (stop - start) / (num - 1)
return (_npi.linspace(start=start, stop=stop, num=num, endpoint=endpoint, ctx=ctx, dtype=dtype), step)
else:
return _npi.linspace(start=start, stop=stop, num=num, endpoint=endpoint, ctx=ctx, dtype=dtype)


_set_np_symbol_class(_Symbol)
1 change: 1 addition & 0 deletions src/operator/tensor/init_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -138,6 +138,7 @@ Examples::
.add_arguments(RangeLikeParam::__FIELDS__());

NNVM_REGISTER_OP(_linspace)
.add_alias("_npi_linspace")
.describe("Return evenly spaced numbers over a specified interval. Similar to Numpy")
.set_num_inputs(0)
.set_num_outputs(1)
Expand Down
70 changes: 70 additions & 0 deletions tests/python/unittest/test_numpy_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -275,6 +275,76 @@ def is_int(dtype):
assert_almost_equal(mx_out.asnumpy(), np_out, rtol=1e-3, atol=1e-5)


@with_seed()
@use_np
def test_np_linspace():
configs = [
(0.0, 1.0, 10),
(-2, 4, 30),
(5.234324, 8.98324, 324),
(2, 10, 100)
]
exception_configs = [
(0, 10, -1),
(0, 1, 2.5)
]
dtypes = ['int32', 'float16', 'float32', 'float64', None]
for config in configs:
for dtype in dtypes:
for endpoint in [False, True]:
for retstep in [False, True]:
if isinstance(config, tuple):
mx_ret = np.linspace(*config, endpoint=endpoint, retstep=retstep, dtype=dtype)
np_ret = _np.linspace(*config, endpoint=endpoint, retstep=retstep, dtype=dtype)
else:
mx_ret = np.linspace(config, endpoint=endpoint, retstep=retstep, dtype=dtype)
np_ret = _np.linspace(config, endpoint=endpoint, retstep=retstep, dtype=dtype)
if retstep:
assert_almost_equal(mx_ret[0].asnumpy(), np_ret[0], atol=1e-3, rtol=1e-5)
same(mx_ret[1], np_ret[1])
else:
assert_almost_equal(mx_ret.asnumpy(), np_ret, atol=1e-3, rtol=1e-5)
# check for exception input
for config in exception_configs:
assertRaises(MXNetError, np.linspace, *config)
# check linspace equivalent to arange
for test_index in range(1000):
assert_almost_equal(mx.np.linspace(0, test_index, test_index + 1).asnumpy(), _np.arange(test_index + 1))
@use_np
class TestLinspace(HybridBlock):
def __init__(self, start, stop, num=50, endpoint=None, retstep=False, dtype=None, axis=0):
super(TestLinspace, self).__init__()
self._start = start
self._stop = stop
self._num = num
self._endpoint = endpoint
self._retstep = retstep
self._dtype = dtype

def hybrid_forward(self, F, x):
if self._retstep:
raise ValueError("linspace didn't support retstep = True inside HybridBlock")
else:
return x + F.np.linspace(self._start, self._stop, self._num, \
self._endpoint, self._retstep, self._dtype)

for dtype in dtypes:
x = np.zeros(shape=(), dtype=dtype)
for config in configs:
for hybridize in [False, True]:
for endpoint in [False, True]:
if isinstance(config, tuple):
net = TestLinspace(*config, endpoint=endpoint, dtype=dtype)
np_out = _np.linspace(*config, endpoint=endpoint, dtype=dtype)
else:
net = TestLinspace(config, endpoint=endpoint, dtype=dtype)
np_out = _np.linspace(config, endpoint=endpoint, dtype=dtype)
if hybridize:
net.hybridize()
mx_out = net(x)
assert_almost_equal(mx_out.asnumpy(), np_out, atol=1e-3, rtol=1e-5)


@with_seed()
@use_np
def test_npx_slice():
Expand Down

0 comments on commit e26f58d

Please sign in to comment.