Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
add sum for boolean type in mainline
Browse files Browse the repository at this point in the history
  • Loading branch information
haojin2 committed Oct 18, 2019
1 parent efa5369 commit c2146c3
Show file tree
Hide file tree
Showing 5 changed files with 38 additions and 13 deletions.
10 changes: 10 additions & 0 deletions 3rdparty/mshadow/mshadow/base.h
Original file line number Diff line number Diff line change
Expand Up @@ -650,6 +650,11 @@ template<>
MSHADOW_XINLINE int64_t MinValue<int64_t>(void) {
return LLONG_MIN;
}
/*! \brief minimum value of bool */
template<>
MSHADOW_XINLINE bool MinValue<bool>(void) {
return false;
}

/*!
* \brief negative infinity of certain types
Expand Down Expand Up @@ -711,6 +716,11 @@ template<>
MSHADOW_XINLINE int64_t MaxValue<int64_t>(void) {
return LLONG_MAX;
}
/*! \brief maximum value of bool */
template<>
MSHADOW_XINLINE bool MaxValue<bool>(void) {
return true;
}

/*!
* \brief positive infinity of certain types
Expand Down
22 changes: 16 additions & 6 deletions src/operator/mxnet_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -314,6 +314,14 @@ struct AccType<mshadow::half::half_t> {
"floating point types, not int64"; \
} \
break; \
case mshadow::kBool: \
{ \
typedef bool DType; \
typedef int64_t AType; \
LOG(FATAL) << "This operation only support " \
"floating point types, not bool"; \
} \
break; \
default: \
LOG(FATAL) << "Unknown type enum " << type; \
}
Expand Down Expand Up @@ -369,6 +377,13 @@ struct AccType<mshadow::half::half_t> {
{__VA_ARGS__} \
} \
break; \
case mshadow::kBool: \
{ \
typedef bool DType; \
typedef int64_t AType; \
{__VA_ARGS__} \
} \
break; \
default: \
LOG(FATAL) << "Unknown type enum " << type; \
}
Expand Down Expand Up @@ -608,16 +623,11 @@ template <typename xpu>
MSHADOW_CINLINE void copy(mshadow::Stream<xpu> *s, const TBlob& to, const TBlob& from) {
CHECK_EQ(from.Size(), to.Size());
CHECK_EQ(from.dev_mask(), to.dev_mask());
if (from.type_flag_ == mshadow::kBool || to.type_flag_ == mshadow::kBool) {
CHECK_EQ(from.type_flag_, to.type_flag_) << "Only supports copying between boolean ndarrays.";
mshadow::Copy(to.FlatTo1D<xpu, bool>(s), from.FlatTo1D<xpu, bool>(s), s);
return;
}
MSHADOW_TYPE_SWITCH(to.type_flag_, DType, {
if (to.type_flag_ == from.type_flag_) {
mshadow::Copy(to.FlatTo1D<xpu, DType>(s), from.FlatTo1D<xpu, DType>(s), s);
} else {
MSHADOW_TYPE_SWITCH(from.type_flag_, SrcDType, {
MSHADOW_TYPE_SWITCH_WITH_BOOL(from.type_flag_, SrcDType, {
to.FlatTo1D<xpu, DType>(s) = mshadow::expr::tcast<DType>(from.FlatTo1D<xpu, SrcDType>(s));
})
}
Expand Down
4 changes: 3 additions & 1 deletion src/operator/numpy/np_broadcast_reduce_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -226,7 +226,7 @@ void NumpyReduceAxesCompute(const nnvm::NodeAttrs& attrs,
if (param.initial.has_value()) {
LOG(FATAL) << "initial is not supported yet";
}
if (inputs[0].shape_.Size() == 0) {
if (inputs[0].shape_.Size() == 0 && outputs[0].shape_.Size() != 0) {
using namespace mxnet_op;
using namespace mshadow;
Stream<xpu>* s = ctx.get_stream<xpu>();
Expand All @@ -236,6 +236,7 @@ void NumpyReduceAxesCompute(const nnvm::NodeAttrs& attrs,
return;
}
CHECK_NE(req[0], kWriteInplace) << "Reduce does not support write in-place";
#if MXNET_USE_TVM_OP
// If boolean ndarray, use the kernel generated by TVM
if (inputs[0].type_flag_ == mshadow::kBool) {
std::string reducer_name;
Expand All @@ -247,6 +248,7 @@ void NumpyReduceAxesCompute(const nnvm::NodeAttrs& attrs,
TVMOpReduce(ctx, inputs[0], param.axis, outputs[0], req[0], reducer_name);
return;
}
#endif
if (param.axis.has_value() && param.axis.value().ndim() == 0) {
UnaryOp::IdentityCompute<xpu>(attrs, ctx, inputs, req, outputs);
}
Expand Down
2 changes: 1 addition & 1 deletion src/operator/tensor/broadcast_reduce_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -616,7 +616,7 @@ void ReduceAxesComputeImpl(const OpContext& ctx,
mxnet::TShape src_shape, dst_shape;
BroadcastReduceShapeCompact(inputs[0].shape_, small, &src_shape, &dst_shape);
Stream<xpu> *s = ctx.get_stream<xpu>();
MSHADOW_TYPE_SWITCH(inputs[0].type_flag_, DType, {
MSHADOW_TYPE_SWITCH_WITH_BOOL(inputs[0].type_flag_, DType, {
MSHADOW_TYPE_SWITCH(outputs[0].type_flag_, OType, {
const TBlob in_data = inputs[0].reshape(src_shape);
const TBlob out_data = outputs[0].reshape(dst_shape);
Expand Down
13 changes: 8 additions & 5 deletions tests/python/unittest/test_numpy_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,8 @@
from mxnet.test_utils import verify_generator, gen_buckets_probs_with_ppf, retry
from mxnet.runtime import Features
from mxnet.numpy_op_signature import _get_builtin_op
from mxnet.test_utils import verify_generator, gen_buckets_probs_with_ppf, has_tvm_ops
from mxnet.test_utils import current_context, verify_generator, gen_buckets_probs_with_ppf
from mxnet.test_utils import is_op_runnable, has_tvm_ops
import platform


Expand Down Expand Up @@ -434,13 +435,15 @@ def is_int(dtype):
shape = rand_shape_nd(in_data_dim, dim=3)
acc_type = {'float16': 'float32', 'float32': 'float64', 'float64': 'float64',
'int8': 'int32', 'int32': 'int64', 'int64': 'int64', 'bool': 'int64'}
is_windows = sys.platform.startswith('win')
for hybridize in [False, True]:
for keepdims in [True, False]:
for axis in ([i for i in range(in_data_dim)] + [(), None]):
for itype in ['float16', 'float32', 'float64', 'int8', 'int32', 'int64', 'bool']:
for dtype in ['float16', 'float32', 'float64', 'int8', 'int32', 'int64']:
if (is_int(dtype) and not is_int(itype))\
or (itype == 'bool' and dtype not in ('float32', 'float64', 'int32', 'int64')):
or (itype == 'bool' and\
(dtype not in ('float32', 'float64', 'int32', 'int64') or is_windows)):
continue
# test gluon
test_sum = TestSum(axis=axis, dtype=dtype, keepdims=keepdims)
Expand All @@ -456,8 +459,8 @@ def is_int(dtype):
x = np.random.uniform(-1.0, 1.0, size=shape, dtype=itype)
expected_ret = _np.sum(x.asnumpy(), axis=axis, dtype=acc_type[itype], keepdims=keepdims)
expected_ret = expected_ret.astype(dtype)
if itype == 'bool': # special handling of boolean ndarray
if has_tvm_ops():
if itype == 'bool':
if is_op_runnable() and (not is_windows): # special handling of boolean ndarray
y = test_sum(x)
assert y.dtype == expected_ret.dtype
assert_almost_equal(y.asnumpy(), expected_ret, rtol=1e-4, atol=1e-5,
Expand All @@ -479,7 +482,7 @@ def is_int(dtype):
x_sym = mx.sym.Variable("x").as_np_ndarray()
mx_sym = mx.sym.np.sum(x_sym, axis=axis, dtype=dtype, keepdims=keepdims).as_nd_ndarray()
check_numeric_gradient(mx_sym, [x.as_nd_ndarray()],
numeric_eps=1e-3, rtol=1e-3, atol=1e-4, dtype=_np.float32)
numeric_eps=1e-3, rtol=1e-2, atol=1e-3, dtype=_np.float32)

# test imperative
mx_out = np.sum(x, axis=axis, dtype=dtype, keepdims=keepdims)
Expand Down

0 comments on commit c2146c3

Please sign in to comment.