Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
[MXNet-1343][Fit API]Add CNN integration test for fit() API (#14405)
Browse files Browse the repository at this point in the history
* added cnn intg tests for fit api

* updated cnn intg tests

* added functions for nightly test

* updated runtime_function

* updated intg tests

* updated init, datapath, refs

* added validation data

* update cpu test

* refactor code

* updated context
  • Loading branch information
abhinavs95 authored and nswamy committed Apr 3, 2019
1 parent 81ec379 commit b1ef99a
Show file tree
Hide file tree
Showing 3 changed files with 183 additions and 0 deletions.
14 changes: 14 additions & 0 deletions ci/docker/runtime_functions.sh
Original file line number Diff line number Diff line change
Expand Up @@ -1296,6 +1296,20 @@ nightly_scala_demo_test_cpu() {
bash bin/run_im.sh
}

nightly_estimator_cnn_gpu() {
set -ex
cd /work/mxnet/tests/nightly/estimator
export PYTHONPATH=/work/mxnet/python/
python test_estimator_cnn.py --type gpu
}

nightly_estimator_cnn_cpu() {
set -ex
cd /work/mxnet/tests/nightly/estimator
export PYTHONPATH=/work/mxnet/python/
python test_estimator_cnn.py --type cpu
}

nightly_estimator_rnn_gpu() {
set -ex
cd /work/mxnet/tests/nightly/estimator
Expand Down
16 changes: 16 additions & 0 deletions tests/nightly/JenkinsfileForBinaries
Original file line number Diff line number Diff line change
Expand Up @@ -106,6 +106,22 @@ core_logic: {
utils.docker_run('ubuntu_nightly_gpu', 'nightly_tutorial_test_ubuntu_python3_gpu', true, '1500m')
}
}
},
'estimator: CNN GPU': {
node(NODE_LINUX_GPU) {
ws('workspace/estimator-test-cnn-gpu') {
utils.unpack_and_init('gpu', mx_lib)
utils.docker_run('ubuntu_nightly_gpu', 'nightly_estimator_test_cnn_gpu', true)
}
}
},
'estimator: CNN CPU': {
node(NODE_LINUX_CPU) {
ws('workspace/estimator-test-cnn-cpu') {
utils.unpack_and_init('cpu', mx_lib)
utils.docker_run('ubuntu_nightly_cpu', 'nightly_estimator_test_cnn_cpu', true)
}
}
}
}
}
Expand Down
153 changes: 153 additions & 0 deletions tests/nightly/estimator/test_estimator_cnn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,153 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

# Test gluon estimator on CNN models

import argparse
import numpy as np
import mxnet as mx
from mxnet import gluon, init, nd
from mxnet.gluon import data
from mxnet.gluon.estimator import estimator
from mxnet.gluon.model_zoo import vision

def load_data_mnist(batch_size, resize=None, num_workers=4):
'''
Load MNIST dataset
'''
transformer = []
if resize:
transformer += [data.vision.transforms.Resize(resize)]
transformer += [data.vision.transforms.ToTensor()]
transformer = data.vision.transforms.Compose(transformer)
mnist_train = data.vision.MNIST(train=True)
mnist_test = data.vision.MNIST(train=False)
train_iter = data.DataLoader(
mnist_train.transform_first(transformer), batch_size, shuffle=True,
num_workers=num_workers)
test_iter = data.DataLoader(
mnist_test.transform_first(transformer), batch_size, shuffle=False,
num_workers=num_workers)
return train_iter, test_iter

def bilinear_kernel(in_channels, out_channels, kernel_size):
'''
Bilinear interpolation using transposed convolution
https://github.com/d2l-ai/d2l-en/blob/master/chapter_computer-vision/fcn.md
'''
factor = (kernel_size + 1) // 2
if kernel_size % 2 == 1:
center = factor - 1
else:
center = factor - 0.5
og = np.ogrid[:kernel_size, :kernel_size]
filt = (1 - abs(og[0] - center) / factor) * (1 - abs(og[1] - center) / factor)
weight = np.zeros((in_channels, out_channels, kernel_size, kernel_size), dtype='float32')
weight[range(in_channels), range(out_channels), :, :] = filt
return nd.array(weight)

def get_net(model_name, context):
if model_name == 'FCN':
num_classes = 21
pretrained_net = vision.resnet18_v2(pretrained=True, ctx=context)
net = gluon.nn.HybridSequential()
for layer in pretrained_net.features[:-2]:
net.add(layer)
net.add(gluon.nn.Conv2D(num_classes, kernel_size=1),
gluon.nn.Conv2DTranspose(num_classes, kernel_size=64, padding=16, strides=32))
net[-1].initialize(init.Constant(bilinear_kernel(num_classes, num_classes, 64)), ctx=context)
net[-2].initialize(init=init.Xavier(), ctx=context)
input_shape = (1, 3, 320, 480)
label_shape = (1, 320, 480)
loss_axis = 1
else:
net = vision.get_model(model_name, classes=10)
net.initialize(mx.init.Xavier(), ctx=context)
input_shape = (1, 1, 224, 224)
label_shape = 1
loss_axis = -1
return net, input_shape, label_shape, loss_axis

def test_estimator_cpu():
'''
Test estimator by doing one pass over each model with synthetic data
'''
models = ['resnet18_v1',
'FCN'
]
context = mx.cpu()
for model_name in models:
net, input_shape, label_shape, loss_axis = get_net(model_name, context)
train_dataset = gluon.data.dataset.ArrayDataset(mx.nd.random.uniform(shape=input_shape),
mx.nd.zeros(shape=label_shape))
val_dataset = gluon.data.dataset.ArrayDataset(mx.nd.random.uniform(shape=input_shape),
mx.nd.zeros(shape=label_shape))
loss = gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis)
train_data = gluon.data.DataLoader(train_dataset, batch_size=1)
val_data = gluon.data.DataLoader(val_dataset, batch_size=1)
net.hybridize()
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.001})
# Define estimator
est = estimator.Estimator(net=net,
loss=loss,
metrics=mx.metric.Accuracy(),
trainers=trainer,
context=context)
# Call fit()
est.fit(train_data=train_data,
val_data=val_data,
epochs=1,
batch_size=1)

def test_estimator_gpu():
'''
Test estimator by training resnet18_v1 for 5 epochs on MNIST and verify accuracy
'''
model_name = 'resnet18_v1'
batch_size = 128
num_epochs = 5
context = mx.gpu(0)
net, _, _, _ = get_net(model_name, context)
train_data, test_data = load_data_mnist(batch_size, resize=224)
loss = gluon.loss.SoftmaxCrossEntropyLoss()
net.hybridize()
acc = mx.metric.Accuracy()
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.001})
# Define estimator
est = estimator.Estimator(net=net,
loss=loss,
metrics=acc,
trainers=trainer,
context=context)
# Call fit()
est.fit(train_data=train_data,
val_data=test_data,
epochs=num_epochs,
batch_size=batch_size)

assert est.train_stats['train_'+acc.name][num_epochs-1] > 0.80

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='test gluon estimator')
parser.add_argument('--type', type=str, default='cpu')
opt = parser.parse_args()
if opt.type == 'cpu':
test_estimator_cpu()
elif opt.type == 'gpu':
test_estimator_gpu()
else:
raise RuntimeError("Unknown test type")

0 comments on commit b1ef99a

Please sign in to comment.