Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
Modify test for npx (log_)softmax
Browse files Browse the repository at this point in the history
  • Loading branch information
bgawrych committed Jun 24, 2020
1 parent 047a8e8 commit ae2e402
Showing 1 changed file with 32 additions and 14 deletions.
46 changes: 32 additions & 14 deletions tests/python/unittest/test_numpy_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -1922,6 +1922,14 @@ def __init__(self, axis):
def hybrid_forward(self, F, a):
return F.npx.softmax(a, axis=axis)

class TestLogSoftmax(HybridBlock):
def __init__(self, axis):
super(TestLogSoftmax, self).__init__()
self._axis = axis

def hybrid_forward(self, F, a):
return F.npx.log_softmax(a, axis=axis)

def np_softmax(x, axis=-1):
if (x.shape[axis] == 0):
return _np.sum(x, axis=axis, keepdims=True)
Expand All @@ -1930,24 +1938,34 @@ def np_softmax(x, axis=-1):
x /= _np.sum(x, axis=axis, keepdims=True)
return x

def np_log_softmax(x, axis=-1):
return _np.log(np_softmax(x, axis))

#(operator, function) tuples
tested_ops = [(TestSoftmax, np_softmax),
(TestLogSoftmax, np_log_softmax)]

# only testing 0-size shaped inputs here, other input cases have been tested in test_opeartor.py
for hybridize in [True, False]:
for shape in [(3, 0, 4), (0, 0)]:
mx_a = np.random.uniform(size=shape)
mx_a.attach_grad()
for axis in range(-len(shape), len(shape)):
test_softmax = TestSoftmax(axis)
if hybridize:
test_softmax.hybridize()
for SoftmaxOp, softmax_function in tested_ops:
for hybridize in [True, False]:
for shape in [(3, 0, 4), (0, 0)]:
mx_a = np.random.uniform(size=shape)
mx_a.attach_grad()
for axis in range(-len(shape), len(shape)):
test_softmax_op = SoftmaxOp(axis)
if hybridize:
test_softmax_op.hybridize()

with mx.autograd.record():
mx_out = test_softmax(mx_a)
with mx.autograd.record():
mx_out = test_softmax_op(mx_a)

np_out = np_softmax(mx_a.asnumpy(), axis)
assert_almost_equal(mx_out.asnumpy(), np_out, rtol=1e-3, atol=1e-5, equal_nan=True)
mx_out.wait_to_read()

mx_out.backward()
assert_almost_equal(mx_a.grad.asnumpy(), _np.zeros(shape), rtol=1e-3, atol=1e-5)
np_out = softmax_function(mx_a.asnumpy(), axis)
assert_almost_equal(mx_out.asnumpy(), np_out, rtol=1e-3, atol=1e-5, equal_nan=True)

mx_out.backward()
assert_almost_equal(mx_a.grad.asnumpy(), _np.zeros(shape), rtol=1e-3, atol=1e-5)


@with_seed()
Expand Down

0 comments on commit ae2e402

Please sign in to comment.