This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Implement mkldnn convolution fusion and quantization. (#12530)
* Implement mkldnn convolution fusion. Implement mkldnn convolution quantization. * Fix lint * Fix performance regression caused by mkldnn fallback. * clean up include * Fix msbuild on openmp pragma. * Fix quantization test, allow to use original op names as exclude layer for quantization. * Fix unittest. * Fix unittest * fix lint * Add post quantize fusion * add test case * add head license in test case * Remove GetBoolHash() * Remove mkldnn fallback change. * Address Haibin's comments. * Add TIsMKLDNN for _sg_mkldnn_conv temporarily. * Address reminisce's comments. * Handle the case that inplace fail. * pass unit test. * Add symbol api get_backend_symbol() * Retrigger ci * update the test case * Check subgraph index. * Use index as FAvoidQuantizeInput's parameter. * Add mkldnn_hwigo support as quantizaiton needs. * Address KellenSunderland's comments. * Handle input order change after subgraph pass. * Fix ci test
- Loading branch information
1 parent
f0140b3
commit ad027ca
Showing
29 changed files
with
2,416 additions
and
216 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,207 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
import argparse | ||
import os | ||
import logging | ||
from common import modelzoo | ||
import mxnet as mx | ||
from mxnet.contrib.quantization import * | ||
from mxnet.base import SymbolHandle, check_call, _LIB, mx_uint, c_str_array | ||
import ctypes | ||
|
||
|
||
def download_calib_dataset(dataset_url, calib_dataset, logger=None): | ||
if logger is not None: | ||
logger.info('Downloading calibration dataset from %s to %s' % (dataset_url, calib_dataset)) | ||
mx.test_utils.download(dataset_url, calib_dataset) | ||
|
||
|
||
def download_model(model_name, logger=None): | ||
dir_path = os.path.dirname(os.path.realpath(__file__)) | ||
model_path = os.path.join(dir_path, 'model') | ||
if logger is not None: | ||
logger.info('Downloading model %s... into path %s' % (model_name, model_path)) | ||
return modelzoo.download_model(args.model, os.path.join(dir_path, 'model')) | ||
|
||
|
||
def save_symbol(fname, sym, logger=None): | ||
if logger is not None: | ||
logger.info('Saving symbol into file at %s' % fname) | ||
sym.save(fname) | ||
|
||
|
||
def save_params(fname, arg_params, aux_params, logger=None): | ||
if logger is not None: | ||
logger.info('Saving params into file at %s' % fname) | ||
save_dict = {('arg:%s' % k): v.as_in_context(cpu()) for k, v in arg_params.items()} | ||
save_dict.update({('aux:%s' % k): v.as_in_context(cpu()) for k, v in aux_params.items()}) | ||
mx.nd.save(fname, save_dict) | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser(description='Generate a calibrated quantized model from a FP32 model with MKL-DNN support') | ||
parser.add_argument('--model', type=str, choices=['imagenet1k-resnet-152', 'imagenet1k-inception-bn'], | ||
help='currently only supports imagenet1k-resnet-152 or imagenet1k-inception-bn') | ||
parser.add_argument('--batch-size', type=int, default=32) | ||
parser.add_argument('--label-name', type=str, default='softmax_label') | ||
parser.add_argument('--calib-dataset', type=str, default='data/val_256_q90.rec', | ||
help='path of the calibration dataset') | ||
parser.add_argument('--image-shape', type=str, default='3,224,224') | ||
parser.add_argument('--data-nthreads', type=int, default=60, | ||
help='number of threads for data decoding') | ||
parser.add_argument('--num-calib-batches', type=int, default=10, | ||
help='number of batches for calibration') | ||
parser.add_argument('--exclude-first-conv', action='store_true', default=True, | ||
help='excluding quantizing the first conv layer since the' | ||
' input data may have negative value which doesn\'t support at moment' ) | ||
parser.add_argument('--shuffle-dataset', action='store_true', default=True, | ||
help='shuffle the calibration dataset') | ||
parser.add_argument('--shuffle-chunk-seed', type=int, default=3982304, | ||
help='shuffling chunk seed, see' | ||
' https://mxnet.incubator.apache.org/api/python/io/io.html?highlight=imager#mxnet.io.ImageRecordIter' | ||
' for more details') | ||
parser.add_argument('--shuffle-seed', type=int, default=48564309, | ||
help='shuffling seed, see' | ||
' https://mxnet.incubator.apache.org/api/python/io/io.html?highlight=imager#mxnet.io.ImageRecordIter' | ||
' for more details') | ||
parser.add_argument('--calib-mode', type=str, default='entropy', | ||
help='calibration mode used for generating calibration table for the quantized symbol; supports' | ||
' 1. none: no calibration will be used. The thresholds for quantization will be calculated' | ||
' on the fly. This will result in inference speed slowdown and loss of accuracy' | ||
' in general.' | ||
' 2. naive: simply take min and max values of layer outputs as thresholds for' | ||
' quantization. In general, the inference accuracy worsens with more examples used in' | ||
' calibration. It is recommended to use `entropy` mode as it produces more accurate' | ||
' inference results.' | ||
' 3. entropy: calculate KL divergence of the fp32 output and quantized output for optimal' | ||
' thresholds. This mode is expected to produce the best inference accuracy of all three' | ||
' kinds of quantized models if the calibration dataset is representative enough of the' | ||
' inference dataset.') | ||
parser.add_argument('--quantized-dtype', type=str, default='uint8', | ||
choices=['int8', 'uint8'], | ||
help='quantization destination data type for input data') | ||
parser.add_argument('--enable-calib-quantize', type=bool, default=True, | ||
help='If enabled, the quantize op will ' | ||
'be calibrated offline if calibration mode is ' | ||
'enabled') | ||
args = parser.parse_args() | ||
ctx = mx.cpu(0) | ||
logging.basicConfig() | ||
logger = logging.getLogger('logger') | ||
logger.setLevel(logging.INFO) | ||
|
||
logger.info('shuffle_dataset=%s' % args.shuffle_dataset) | ||
|
||
calib_mode = args.calib_mode | ||
logger.info('calibration mode set to %s' % calib_mode) | ||
|
||
# download calibration dataset | ||
if calib_mode != 'none': | ||
download_calib_dataset('http://data.mxnet.io/data/val_256_q90.rec', args.calib_dataset) | ||
|
||
# download model | ||
prefix, epoch = download_model(model_name=args.model, logger=logger) | ||
sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch) | ||
|
||
sym = sym.get_backend_symbol('MKLDNN') | ||
|
||
# get batch size | ||
batch_size = args.batch_size | ||
logger.info('batch size = %d for calibration' % batch_size) | ||
|
||
# get number of batches for calibration | ||
num_calib_batches = args.num_calib_batches | ||
if calib_mode == 'none': | ||
logger.info('skip calibration step as calib_mode is none') | ||
else: | ||
logger.info('number of batches = %d for calibration' % num_calib_batches) | ||
|
||
# get number of threads for decoding the dataset | ||
data_nthreads = args.data_nthreads | ||
|
||
# get image shape | ||
image_shape = args.image_shape | ||
|
||
exclude_first_conv = args.exclude_first_conv | ||
excluded_sym_names = [] | ||
if args.model == 'imagenet1k-resnet-152': | ||
rgb_mean = '0,0,0' | ||
calib_layer = lambda name: name.endswith('_output') | ||
excluded_sym_names += ['flatten0', 'fc1'] | ||
if exclude_first_conv: | ||
excluded_sym_names += ['conv0', 'pooling0'] | ||
elif args.model == 'imagenet1k-inception-bn': | ||
rgb_mean = '123.68,116.779,103.939' | ||
calib_layer = lambda name: name.endswith('_output') | ||
excluded_sym_names += ['flatten', 'fc1'] | ||
if exclude_first_conv: | ||
excluded_sym_names += ['conv_1'] | ||
else: | ||
raise ValueError('model %s is not supported in this script' % args.model) | ||
|
||
label_name = args.label_name | ||
logger.info('label_name = %s' % label_name) | ||
|
||
data_shape = tuple([int(i) for i in image_shape.split(',')]) | ||
logger.info('Input data shape = %s' % str(data_shape)) | ||
|
||
logger.info('rgb_mean = %s' % rgb_mean) | ||
rgb_mean = [float(i) for i in rgb_mean.split(',')] | ||
mean_args = {'mean_r': rgb_mean[0], 'mean_g': rgb_mean[1], 'mean_b': rgb_mean[2]} | ||
|
||
if calib_mode == 'none': | ||
logger.info('Quantizing FP32 model %s' % args.model) | ||
qsym, qarg_params, aux_params = quantize_model(sym=sym, arg_params=arg_params, aux_params=aux_params, | ||
ctx=ctx, excluded_sym_names=excluded_sym_names, | ||
calib_mode=calib_mode, quantized_dtype=args.quantized_dtype, | ||
logger=logger) | ||
sym_name = '%s-symbol.json' % (prefix + '-quantized') | ||
else: | ||
logger.info('Creating ImageRecordIter for reading calibration dataset') | ||
data = mx.io.ImageRecordIter(path_imgrec=args.calib_dataset, | ||
label_width=1, | ||
preprocess_threads=data_nthreads, | ||
batch_size=batch_size, | ||
data_shape=data_shape, | ||
label_name=label_name, | ||
rand_crop=False, | ||
rand_mirror=False, | ||
shuffle=args.shuffle_dataset, | ||
shuffle_chunk_seed=args.shuffle_chunk_seed, | ||
seed=args.shuffle_seed, | ||
**mean_args) | ||
|
||
qsym, qarg_params, aux_params = quantize_model(sym=sym, arg_params=arg_params, aux_params=aux_params, | ||
ctx=ctx, excluded_sym_names=excluded_sym_names, | ||
calib_mode=calib_mode, calib_data=data, | ||
num_calib_examples=num_calib_batches * batch_size, | ||
calib_layer=calib_layer, quantized_dtype=args.quantized_dtype, | ||
label_names=(label_name,), calib_quantize_op = True, | ||
logger=logger) | ||
if calib_mode == 'entropy': | ||
suffix = '-quantized-%dbatches-entropy' % num_calib_batches | ||
elif calib_mode == 'naive': | ||
suffix = '-quantized-%dbatches-naive' % num_calib_batches | ||
else: | ||
raise ValueError('unknow calibration mode %s received, only supports `none`, `naive`, and `entropy`' | ||
% calib_mode) | ||
sym_name = '%s-symbol.json' % (prefix + suffix) | ||
qsym = qsym.get_backend_symbol('MKLDNN_POST_QUANTIZE') | ||
save_symbol(sym_name, qsym, logger) | ||
param_name = '%s-%04d.params' % (prefix + '-quantized', epoch) | ||
save_params(param_name, qarg_params, aux_params, logger) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.