This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Numpy Dot case 1-4 + case 3.5 forward and 0.5 backward * Backward computation and test coverage
- Loading branch information
Showing
5 changed files
with
445 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,244 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* \file np_dot-inl.h | ||
* \brief Function definition of matrix numpy-compatible dot operator | ||
*/ | ||
|
||
#ifndef MXNET_OPERATOR_NUMPY_NP_DOT_INL_H_ | ||
#define MXNET_OPERATOR_NUMPY_NP_DOT_INL_H_ | ||
|
||
#include <mxnet/operator_util.h> | ||
#include <vector> | ||
#include "../tensor/dot-inl.h" | ||
#include "../tensor/elemwise_binary_op.h" | ||
#include "../tensor/broadcast_reduce_op.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
template<typename xpu> | ||
inline void MMImpl(const OpContext& ctx, | ||
const TBlob& a, | ||
const TBlob& b, | ||
const TBlob& out, | ||
const OpReqType req, | ||
const bool trans_a = false, | ||
const bool trans_b = false) { | ||
using namespace mshadow; | ||
using namespace mshadow_op; | ||
|
||
Stream<xpu> *s = ctx.get_stream<xpu>(); | ||
index_t ma, na, mb, nb; | ||
na = a.size(a.ndim() - 1); | ||
ma = a.Size() / na; | ||
mb = b.size(0); | ||
nb = b.Size() / mb; | ||
MSHADOW_REAL_TYPE_SWITCH(out.type_flag_, DType, { | ||
Tensor<xpu, 2, DType> input0 = a.get_with_shape<xpu, 2, DType>(Shape2(ma, na), s); | ||
Tensor<xpu, 2, DType> input1 = b.get_with_shape<xpu, 2, DType>(Shape2(mb, nb), s); | ||
Tensor<xpu, 2, DType> output0; | ||
if (trans_a && trans_b) { | ||
output0 = out.get_with_shape<xpu, 2, DType>(Shape2(na, mb), s); | ||
ASSIGN_DISPATCH(output0, req, dot(input0.T(), input1.T())); | ||
} else if (!trans_a && trans_b) { | ||
output0 = out.get_with_shape<xpu, 2, DType>(Shape2(ma, mb), s); | ||
ASSIGN_DISPATCH(output0, req, dot(input0, input1.T())); | ||
} else if (trans_a && !trans_b) { | ||
output0 = out.get_with_shape<xpu, 2, DType>(Shape2(na, nb), s); | ||
ASSIGN_DISPATCH(output0, req, dot(input0.T(), input1)); | ||
} else { | ||
output0 = out.get_with_shape<xpu, 2, DType>(Shape2(ma, nb), s); | ||
ASSIGN_DISPATCH(output0, req, dot(input0, input1)); | ||
} | ||
}); | ||
} | ||
|
||
template<int req> | ||
struct scalar_mul_kernel { | ||
template<typename DType> | ||
MSHADOW_XINLINE static void Map(int i, DType *out, const DType* tensor, const DType *scalar) { | ||
KERNEL_ASSIGN(out[i], req, tensor[i] * scalar[0]); | ||
} | ||
}; | ||
|
||
template<typename xpu> | ||
inline void NumpyDotForward(const nnvm::NodeAttrs& attrs, | ||
const OpContext& ctx, | ||
const std::vector<TBlob>& inputs, | ||
const std::vector<OpReqType>& req, | ||
const std::vector<TBlob>& outputs) { | ||
using namespace mshadow; | ||
using namespace mxnet_op; | ||
|
||
CHECK_EQ(inputs.size(), 2U); | ||
CHECK_EQ(outputs.size(), 1U); | ||
|
||
if (req[0] == kNullOp) return; | ||
const TBlob& a = inputs[0]; | ||
const TBlob& b = inputs[1]; | ||
const TBlob& out = outputs[0]; | ||
const mxnet::TShape a_shape = a.shape_; | ||
const mxnet::TShape b_shape = b.shape_; | ||
|
||
Stream<xpu> *s = ctx.get_stream<xpu>(); | ||
CHECK_EQ(out.type_flag_, a.type_flag_) | ||
<< "Binary function only support input/output with the same type"; | ||
CHECK_EQ(out.type_flag_, b.type_flag_) | ||
<< "Binary function only support input/output with the same type"; | ||
CHECK(out.type_flag_ == kFloat32 || out.type_flag_ == kFloat64 || | ||
(out.type_flag_ == kFloat16 && ctx.run_ctx.ctx.dev_mask() == mshadow::gpu::kDevMask)) | ||
<< "dot only supports float32/float64 for CPU, and float16/float32/float64 for GPU"; | ||
MSHADOW_REAL_TYPE_SWITCH(out.type_flag_, DType, { | ||
if (a_shape.ndim() == 1 && b_shape.ndim() == 1) { | ||
// Case 1: both 1-D arrays, inner product of vectors | ||
if (out.type_flag_ == kFloat16) { | ||
MMImpl<xpu>(ctx, a, b, out, req[0]); | ||
} else { | ||
CHECK_NE(req[0], kAddTo) << "AddTo not yet supported"; | ||
Tensor<xpu, 1, DType> mock_1d = out.get_with_shape<xpu, 1, DType>(Shape1(1), s); | ||
VectorDot(mock_1d, a.get<xpu, 1, DType>(s), b.get<xpu, 1, DType>(s)); | ||
} | ||
} else if (a_shape.ndim() == 2 && b_shape.ndim() == 2) { | ||
// Case 2: both 2-D arrays, matrix multiplication | ||
MMImpl<xpu>(ctx, a, b, out, req[0]); | ||
} else if (a_shape.ndim() == 0 && b_shape.ndim() == 0) { | ||
// Case 3: both 0-D scalars, equivalent to multiply | ||
Tensor<xpu, 1, DType> a_data = a.get_with_shape<xpu, 1, DType>(Shape1(1), s); | ||
Tensor<xpu, 1, DType> b_data = b.get_with_shape<xpu, 1, DType>(Shape1(1), s); | ||
Tensor<xpu, 1, DType> out_data = out.get_with_shape<xpu, 1, DType>(Shape1(1), s); | ||
ASSIGN_DISPATCH(out_data, req[0], a_data * b_data); | ||
} else if (a_shape.ndim() == 0 || b_shape.ndim() == 0) { | ||
const DType* tensor = (a_shape.ndim() == 0) ? b.dptr<DType>() : a.dptr<DType>(); | ||
const DType* scalar = (a_shape.ndim() == 0) ? a.dptr<DType>() : b.dptr<DType>(); | ||
// Case 3.5: either of them is a scalar, just scale by one of them | ||
MXNET_ASSIGN_REQ_SWITCH(req[0], Req, { | ||
Kernel<scalar_mul_kernel<Req>, xpu>::Launch( | ||
s, out.Size(), out.dptr<DType>(), tensor, scalar); | ||
}); | ||
} else if (b_shape.ndim() == 1) { | ||
// Case 4: a is N-D array and b is 1-D array, sum product over the last axis | ||
MMImpl<xpu>(ctx, a, b, out, req[0]); | ||
} else { | ||
// TODO(haojin2): To be implemented... | ||
// Case 5: a is N-D array and b is M-D array, sum product over the last axis | ||
// of a and the 2nd-to-last axis of b | ||
LOG(FATAL) << "Case 5 not implemented yet..."; | ||
} | ||
}); | ||
} | ||
|
||
template<typename xpu> | ||
inline void NumpyDotBackward(const nnvm::NodeAttrs& attrs, | ||
const OpContext& ctx, | ||
const std::vector<TBlob>& inputs, | ||
const std::vector<OpReqType>& req, | ||
const std::vector<TBlob>& outputs) { | ||
using namespace mshadow; | ||
using namespace mshadow_op; | ||
|
||
CHECK_EQ(inputs.size(), 3U); | ||
CHECK_EQ(outputs.size(), 2U); | ||
|
||
const TBlob& ograd = inputs[0]; | ||
const TBlob& a = inputs[1]; | ||
const TBlob& b = inputs[2]; | ||
const TBlob& grad_a = outputs[0]; | ||
const TBlob& grad_b = outputs[1]; | ||
const mxnet::TShape a_shape = a.shape_; | ||
const mxnet::TShape b_shape = b.shape_; | ||
|
||
Stream<xpu> *s = ctx.get_stream<xpu>(); | ||
MSHADOW_REAL_TYPE_SWITCH(ograd.type_flag_, DType, { | ||
if (a_shape.ndim() == 1 && b_shape.ndim() == 1) { | ||
// Case 1: both 1-D arrays, inner product of vectors | ||
Tensor<xpu, 1, DType> out_grad = ograd.get_with_shape<xpu, 1, DType>(Shape1(1), s); | ||
Tensor<xpu, 1, DType> a_data = a.get<xpu, 1, DType>(s); | ||
Tensor<xpu, 1, DType> b_data = b.get<xpu, 1, DType>(s); | ||
Tensor<xpu, 1, DType> a_grad = grad_a.get<xpu, 1, DType>(s); | ||
Tensor<xpu, 1, DType> b_grad = grad_b.get<xpu, 1, DType>(s); | ||
ASSIGN_DISPATCH(b_grad, req[1], | ||
broadcast_scalar(out_grad, a_data.shape_) * a_data); | ||
ASSIGN_DISPATCH(a_grad, req[0], | ||
broadcast_scalar(out_grad, a_data.shape_) * b_data); | ||
} else if (a_shape.ndim() == 2 && b_shape.ndim() == 2) { | ||
// Case 2: both 2-D arrays, matrix multiplication | ||
MMImpl<xpu>(ctx, a, ograd, grad_b, req[1], true, false); | ||
MMImpl<xpu>(ctx, ograd, b, grad_a, req[0], false, true); | ||
} else if (a_shape.ndim() == 0 && b_shape.ndim() == 0) { | ||
// Case 3: both 0-D scalars, equivalent to multiply | ||
Tensor<xpu, 1, DType> out_grad = ograd.get_with_shape<xpu, 1, DType>(Shape1(1), s); | ||
Tensor<xpu, 1, DType> a_data = a.get_with_shape<xpu, 1, DType>(Shape1(1), s); | ||
Tensor<xpu, 1, DType> b_data = b.get_with_shape<xpu, 1, DType>(Shape1(1), s); | ||
Tensor<xpu, 1, DType> a_grad = grad_a.get_with_shape<xpu, 1, DType>(Shape1(1), s); | ||
Tensor<xpu, 1, DType> b_grad = grad_b.get_with_shape<xpu, 1, DType>(Shape1(1), s); | ||
ASSIGN_DISPATCH(a_grad, req[0], b_data * out_grad); | ||
ASSIGN_DISPATCH(b_grad, req[1], a_data * out_grad); | ||
} else if (a_shape.ndim() == 0 || b_shape.ndim() == 0) { | ||
// Case 3.5: either of them is a scalar, just scale by one of them | ||
const TBlob& tensor = (a_shape.ndim() == 0) ? b : a; | ||
const TBlob& tensor_grad = (a_shape.ndim() == 0) ? grad_b : grad_a; | ||
const TBlob& scalar = (a_shape.ndim() == 0) ? a : b; | ||
const TBlob& scalar_grad = (a_shape.ndim() == 0) ? grad_a : grad_b; | ||
Tensor<xpu, 1, DType> scalar_ = scalar.get_with_shape<xpu, 1, DType>(Shape1(1), s); | ||
Tensor<xpu, 1, DType> scalar_grad_ = scalar_grad.get_with_shape<xpu, 1, DType>(Shape1(1), s); | ||
Tensor<xpu, 1, DType> tensor_ = tensor.FlatTo1D<xpu, DType>(s); | ||
Tensor<xpu, 1, DType> tensor_grad_ = tensor_grad.FlatTo1D<xpu, DType>(s); | ||
Tensor<xpu, 1, DType> ograd_ = ograd.FlatTo1D<xpu, DType>(s); | ||
const OpReqType& tensor_req = (a_shape.ndim() == 0) ? req[1] : req[0]; | ||
const OpReqType& scalar_req = (a_shape.ndim() == 0) ? req[0] : req[1]; | ||
ASSIGN_DISPATCH(tensor_grad_, tensor_req, | ||
broadcast_scalar(scalar_, tensor_grad_.shape_) * ograd_); | ||
// TODO(haojin2): Get rid of temporary space. | ||
Tensor<xpu, 1, DType> temp_space = | ||
ctx.requested[0].get_space_typed<xpu, 1, DType>(Shape1(ograd.shape_.Size()), s); | ||
ASSIGN_DISPATCH(temp_space, kWriteTo, tensor_ * ograd_); | ||
|
||
ReduceAxesComputeImpl<xpu, mshadow_op::sum, true>( | ||
ctx, {TBlob(temp_space)}, {scalar_req}, {TBlob(scalar_grad_)}, scalar_grad_.shape_); | ||
} else if (b_shape.ndim() == 1) { | ||
size_t na = a_shape[a_shape.ndim() - 1]; | ||
size_t ma = a_shape.Size() / na; | ||
Tensor<xpu, 2, DType> a_ = | ||
a.get_with_shape<xpu, 2, DType>(Shape2(ma, na), s); | ||
Tensor<xpu, 2, DType> b_ = | ||
b.get_with_shape<xpu, 2, DType>(Shape2(b_shape.Size(), 1), s); | ||
Tensor<xpu, 2, DType> grad_a_ = | ||
grad_a.get_with_shape<xpu, 2, DType>(Shape2(ma, na), s); | ||
Tensor<xpu, 2, DType> grad_b_ = | ||
grad_b.get_with_shape<xpu, 2, DType>(Shape2(b_shape.Size(), 1), s); | ||
Tensor<xpu, 2, DType> ograd_ = | ||
ograd.get_with_shape<xpu, 2, DType>(Shape2(ograd.shape_.Size(), 1), s); | ||
// Case 4: a is N-D array and b is 1-D array, sum product over the last axis | ||
MMImpl<xpu>(ctx, TBlob(a_), TBlob(ograd_), TBlob(grad_b_), req[1], true, false); | ||
MMImpl<xpu>(ctx, TBlob(ograd_), TBlob(b_), TBlob(grad_a_), req[0], false, true); | ||
} else { | ||
// TODO(haojin2): To be implemented... | ||
// Case 5: a is N-D array and b is M-D array, sum product over the last axis | ||
// of a and the 2nd-to-last axis of b | ||
LOG(FATAL) << "Case 5 not implemented yet..."; | ||
} | ||
}); | ||
} | ||
|
||
} // namespace op | ||
} // namespace mxnet | ||
|
||
#endif // MXNET_OPERATOR_NUMPY_NP_DOT_INL_H_ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* \file np_dot.cc | ||
* \brief CPU Implementation of numpy-compatible dot | ||
*/ | ||
|
||
#include "./np_dot-inl.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
inline bool NumpyDotShape(const nnvm::NodeAttrs& attrs, | ||
mxnet::ShapeVector *in_attrs, | ||
mxnet::ShapeVector *out_attrs) { | ||
CHECK_EQ(in_attrs->size(), 2U); | ||
CHECK_EQ(out_attrs->size(), 1U); | ||
|
||
const mxnet::TShape& a_shape = in_attrs->at(0); | ||
const mxnet::TShape& b_shape = in_attrs->at(1); | ||
|
||
if (!shape_is_known(a_shape) || !shape_is_known(b_shape)) { | ||
return false; | ||
} | ||
|
||
if (a_shape.ndim() == 1 && b_shape.ndim() == 1) { | ||
// Case 1: both 1-D arrays, inner product of vectors | ||
CHECK_EQ(a_shape[0], b_shape[0]); | ||
SHAPE_ASSIGN_CHECK(*out_attrs, 0, mxnet::TShape(0, 0)); | ||
} else if (a_shape.ndim() == 2 && b_shape.ndim() == 2) { | ||
// Case 2: both 2-D arrays, matrix multiplication | ||
CHECK_EQ(a_shape[1], b_shape[0]); | ||
mxnet::TShape mm_shape(2, 0); | ||
mm_shape[0] = a_shape[0]; | ||
mm_shape[1] = b_shape[1]; | ||
SHAPE_ASSIGN_CHECK(*out_attrs, 0, mm_shape); | ||
} else if (a_shape.ndim() == 0 || b_shape.ndim() == 0) { | ||
// Case 3 + 3.5: either of them is a scalar, just scale by one of them | ||
mxnet::TShape oshape = (a_shape.ndim() == 0) ? b_shape : a_shape; | ||
SHAPE_ASSIGN_CHECK(*out_attrs, 0, oshape); | ||
} else if (b_shape.ndim() == 1) { | ||
// Case 4: a is N-D array and b is 1-D array, sum product over the last axis | ||
CHECK_EQ(a_shape[a_shape.ndim() - 1], b_shape[0]); | ||
mxnet::TShape out_shape(a_shape.ndim() - 1, 0); | ||
for (int i = 0; i < a_shape.ndim() - 1; ++i) { | ||
out_shape[i] = a_shape[i]; | ||
} | ||
SHAPE_ASSIGN_CHECK(*out_attrs, 0, out_shape); | ||
} else { | ||
// Case 5: a is N-D array and b is M-D array, sum product over the last axis | ||
// of a and the 2nd-to-last axis of b | ||
LOG(FATAL) << "Case 5 not implemented yet..."; | ||
} | ||
return true; | ||
} | ||
|
||
NNVM_REGISTER_OP(_numpy_dot) | ||
.describe(R"doc(Dot product of two arrays. Specifically, | ||
- If both a and b are 1-D arrays, it is inner product of vectors. | ||
- If both a and b are 2-D arrays, it is matrix multiplication. | ||
- If either a or b is 0-D (scalar), it is equivalent to multiply and using numpy.multiply(a, b) or a * b is preferred. | ||
- If a is an N-D array and b is a 1-D array, it is a sum product over the last axis of a and b. | ||
- If a is an N-D array and b is an M-D array (where M>=2), it is a sum product over the last axis of a and the second-to-last axis of b: | ||
Example :: | ||
dot(a, b)[i,j,k,m] = sum(a[i,j,:] * b[k,:,m]) | ||
)doc" ADD_FILELINE) | ||
.set_num_inputs(2) | ||
.set_num_outputs(1) | ||
.set_attr<nnvm::FListInputNames>("FListInputNames", | ||
[](const NodeAttrs& attrs) { | ||
return std::vector<std::string>{"a", "b"}; | ||
}) | ||
.set_attr<mxnet::FInferShape>("FInferShape", NumpyDotShape) | ||
.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<2, 1>) | ||
.set_attr<FResourceRequest>("FResourceRequest", | ||
[](const NodeAttrs& attrs) { | ||
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; | ||
}) | ||
.set_attr<FCompute>("FCompute<cpu>", NumpyDotForward<cpu>) | ||
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_np_dot"}) | ||
.add_argument("a", "NDArray-or-Symbol", "First input") | ||
.add_argument("b", "NDArray-or-Symbol", "Second input"); | ||
|
||
NNVM_REGISTER_OP(_backward_np_dot) | ||
.set_num_inputs(3) | ||
.set_num_outputs(2) | ||
.set_attr<nnvm::TIsBackward>("TIsBackward", true) | ||
.set_attr<FResourceRequest>("FResourceRequest", | ||
[](const NodeAttrs& attrs) { | ||
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; | ||
}) | ||
.set_attr<FCompute>("FCompute<cpu>", NumpyDotBackward<cpu>); | ||
|
||
} // namespace op | ||
} // namespace mxnet |
Oops, something went wrong.