This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
with seed for 2 random large array tests
- Loading branch information
1 parent
8818dea
commit 747a69e
Showing
4 changed files
with
292 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* Copyright (c) 2019 by Contributors | ||
* \file cumulative_op.cc | ||
* \brief CPU implementation of cumulative operators | ||
* \author Chaitanya Bapat | ||
*/ | ||
|
||
#include "./cumulative-_op.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
DMLC_REGISTER_PARAMETER(CumsumParam); | ||
|
||
NNVM_REGISTER_OP(cumsum) | ||
.describe(R"code(Finds the cumulative sum of the elements along a given axis. | ||
Examples:: | ||
>>> x = mx.nd.array([[1,2,3], [4,5,6]]) | ||
>>> mx.nd.cumsum(x) | ||
[ 7. 10. 19.] | ||
<NDArray 3 @cpu(0)> | ||
)code" ADD_FILELINE) | ||
.set_attr_parser(ParamParser<CumsumParam>) | ||
.set_num_inputs(1) | ||
.set_num_outputs(1) | ||
.set_attr<nnvm::FListInputNames>("FListInputNames", | ||
[](const NodeAttrs& attrs) { | ||
return std::vector<std::string>{"data"}; | ||
}) | ||
.set_attr<nnvm::FInferShape>("FInferShape", CumSumOpShape) | ||
.set_attr<nnvm::FInferType>("FInferType", CumSumOpType) | ||
.set_attr<FCompute>("FCompute<cpu>", CumSumOpForward<cpu>) | ||
.set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes); | ||
.add_argument("data", "NDArray-or-Symbol", "Input ndarray") | ||
.add_arguments(CumsumParam::__FIELDS__()); | ||
|
||
|
||
} // namespace op | ||
} // namespace mxnet |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,228 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* Copyright (c) 2015 by Contributors | ||
* \file cumulative_op.h | ||
* \brief Function definition of cumulative operators | ||
*/ | ||
#ifndef MXNET_OPERATOR_TENSOR_CUMULATIVE_OP_H_ | ||
#define MXNET_OPERATOR_TENSOR_CUMULATIVE_OP_H_ | ||
|
||
#include <mxnet/operator_util.h> | ||
#include <vector> | ||
#include "../mshadow_op.h" | ||
#include "../mxnet_op.h" | ||
#include "../operator_common.h" | ||
#include "../elemwise_op_common.h" | ||
#include "../tensor/init_op.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
struct CumsumParam : public dmlc::Parameter<CumsumParam> { | ||
int axis; | ||
DMLC_DECLARE_PARAMETER(CumsumParam) { | ||
DMLC_DECLARE_FIELD(axis) | ||
.set_default(dmlc::optional<int>(-1)) | ||
.describe("int or None. The axis along which the cumulative sum" | ||
"is to be calculated." | ||
"If is `None`, calculate the sum over the flattened input"); | ||
DMLC_DECLARE_FIELD(b) | ||
.set_default(0.0) | ||
.describe("Coefficient of the linear term in the quadratic function."); | ||
DMLC_DECLARE_FIELD(c) | ||
.set_default(0.0) | ||
.describe("Constant term in the quadratic function."); | ||
} | ||
}; | ||
|
||
inline bool QuadraticOpShape(const nnvm::NodeAttrs& attrs, | ||
std::vector<TShape>* in_attrs, | ||
std::vector<TShape>* out_attrs) { | ||
CHECK_EQ(in_attrs->size(), 1U); | ||
CHECK_EQ(out_attrs->size(), 1U); | ||
|
||
SHAPE_ASSIGN_CHECK(*out_attrs, 0, in_attrs->at(0)); | ||
SHAPE_ASSIGN_CHECK(*in_attrs, 0, out_attrs->at(0)); | ||
return out_attrs->at(0).ndim() != 0U && out_attrs->at(0).Size() != 0U; | ||
} | ||
|
||
inline bool QuadraticOpType(const nnvm::NodeAttrs& attrs, | ||
std::vector<int>* in_attrs, | ||
std::vector<int>* out_attrs) { | ||
CHECK_EQ(in_attrs->size(), 1U); | ||
CHECK_EQ(out_attrs->size(), 1U); | ||
|
||
TYPE_ASSIGN_CHECK(*out_attrs, 0, in_attrs->at(0)); | ||
TYPE_ASSIGN_CHECK(*in_attrs, 0, out_attrs->at(0)); | ||
return out_attrs->at(0) != -1; | ||
} | ||
|
||
inline bool QuadraticOpStorageType(const nnvm::NodeAttrs& attrs, | ||
const int dev_mask, | ||
DispatchMode* dispatch_mode, | ||
std::vector<int>* in_attrs, | ||
std::vector<int>* out_attrs) { | ||
CHECK_EQ(in_attrs->size(), 1U); | ||
CHECK_EQ(out_attrs->size(), 1U); | ||
const QuadraticParam& param = nnvm::get<QuadraticParam>(attrs.parsed); | ||
const int in_stype = in_attrs->at(0); | ||
int& out_stype = out_attrs->at(0); | ||
bool dispatched = false; | ||
if (!dispatched && in_stype == kDefaultStorage) { | ||
// dns -> dns | ||
dispatched = storage_type_assign(&out_stype, kDefaultStorage, | ||
dispatch_mode, DispatchMode::kFCompute); | ||
} | ||
if (!dispatched && in_stype == kCSRStorage && param.c == 0.0) { | ||
// csr -> csr | ||
dispatched = storage_type_assign(&out_stype, kCSRStorage, | ||
dispatch_mode, DispatchMode::kFComputeEx); | ||
} | ||
if (!dispatched) { | ||
dispatched = dispatch_fallback(out_attrs, dispatch_mode); | ||
} | ||
return dispatched; | ||
} | ||
|
||
template<int req> | ||
struct quadratic_forward { | ||
template<typename DType> | ||
MSHADOW_XINLINE static void Map(int i, DType* out_data, const DType* in_data, | ||
const float a, const float b, const float c) { | ||
KERNEL_ASSIGN(out_data[i], req, in_data[i] * (a * in_data[i] + b) + c); | ||
} | ||
}; | ||
|
||
template<int req> | ||
struct quadratic_backward { | ||
template<typename DType> | ||
MSHADOW_XINLINE static void Map(int i, DType* in_grad, const DType* out_grad, | ||
const DType* in_data, const float a, const float b) { | ||
KERNEL_ASSIGN(in_grad[i], req, out_grad[i] * (2 * a * in_data[i] + b)); | ||
} | ||
}; | ||
|
||
template<typename xpu> | ||
void QuadraticOpForward(const nnvm::NodeAttrs& attrs, | ||
const OpContext& ctx, | ||
const std::vector<TBlob>& inputs, | ||
const std::vector<OpReqType>& req, | ||
const std::vector<TBlob>& outputs) { | ||
CHECK_EQ(inputs.size(), 1U); | ||
CHECK_EQ(outputs.size(), 1U); | ||
CHECK_EQ(req.size(), 1U); | ||
mshadow::Stream<xpu> *s = ctx.get_stream<xpu>(); | ||
const TBlob& in_data = inputs[0]; | ||
const TBlob& out_data = outputs[0]; | ||
const QuadraticParam& param = nnvm::get<QuadraticParam>(attrs.parsed); | ||
using namespace mxnet_op; | ||
MSHADOW_TYPE_SWITCH(out_data.type_flag_, DType, { | ||
MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, { | ||
Kernel<quadratic_forward<req_type>, xpu>::Launch( | ||
s, out_data.Size(), out_data.dptr<DType>(), in_data.dptr<DType>(), | ||
param.a, param.b, param.c); | ||
}); | ||
}); | ||
} | ||
|
||
template<typename xpu> | ||
void QuadraticOpForwardCsrImpl(const QuadraticParam& param, | ||
const OpContext& ctx, | ||
const NDArray& input, | ||
const OpReqType req, | ||
const NDArray& output) { | ||
using namespace mshadow; | ||
using namespace mxnet_op; | ||
using namespace csr; | ||
if (req == kNullOp) return; | ||
CHECK_EQ(req, kWriteTo) << "QuadraticOp with CSR only supports kWriteTo"; | ||
Stream<xpu> *s = ctx.get_stream<xpu>(); | ||
if (!input.storage_initialized()) { | ||
FillZerosCsrImpl(s, output); | ||
return; | ||
} | ||
const nnvm::dim_t nnz = input.storage_shape()[0]; | ||
const nnvm::dim_t num_rows = output.shape()[0]; | ||
output.CheckAndAlloc({Shape1(num_rows + 1), Shape1(nnz)}); | ||
CHECK_EQ(output.aux_type(kIdx), output.aux_type(kIndPtr)) | ||
<< "The dtypes of indices and indptr don't match"; | ||
MSHADOW_TYPE_SWITCH(output.dtype(), DType, { | ||
MSHADOW_IDX_TYPE_SWITCH(output.aux_type(kIdx), IType, { | ||
MXNET_ASSIGN_REQ_SWITCH(req, req_type, { | ||
Kernel<quadratic_forward<req_type>, xpu>::Launch( | ||
s, nnz, output.data().dptr<DType>(), input.data().dptr<DType>(), | ||
param.a, param.b, param.c); | ||
Copy(output.aux_data(kIdx).FlatTo1D<xpu, IType>(s), | ||
input.aux_data(kIdx).FlatTo1D<xpu, IType>(s), s); | ||
Copy(output.aux_data(kIndPtr).FlatTo1D<xpu, IType>(s), | ||
input.aux_data(kIndPtr).FlatTo1D<xpu, IType>(s), s); | ||
}); | ||
}); | ||
}); | ||
} | ||
|
||
template<typename xpu> | ||
void QuadraticOpForwardEx(const nnvm::NodeAttrs& attrs, | ||
const OpContext& ctx, | ||
const std::vector<NDArray>& inputs, | ||
const std::vector<OpReqType>& req, | ||
const std::vector<NDArray>& outputs) { | ||
CHECK_EQ(inputs.size(), 1U); | ||
CHECK_EQ(outputs.size(), 1U); | ||
CHECK_EQ(req.size(), 1U); | ||
const QuadraticParam& param = nnvm::get<QuadraticParam>(attrs.parsed); | ||
const auto in_stype = inputs[0].storage_type(); | ||
const auto out_stype = outputs[0].storage_type(); | ||
if (in_stype == kCSRStorage && out_stype == kCSRStorage && param.c == 0.0) { | ||
QuadraticOpForwardCsrImpl<xpu>(param, ctx, inputs[0], req[0], outputs[0]); | ||
} else { | ||
LogUnimplementedOp(attrs, ctx, inputs, req, outputs); | ||
} | ||
} | ||
|
||
template<typename xpu> | ||
void QuadraticOpBackward(const nnvm::NodeAttrs& attrs, | ||
const OpContext& ctx, | ||
const std::vector<TBlob>& inputs, | ||
const std::vector<OpReqType>& req, | ||
const std::vector<TBlob>& outputs) { | ||
CHECK_EQ(inputs.size(), 2U); | ||
CHECK_EQ(outputs.size(), 1U); | ||
CHECK_EQ(req.size(), 1U); | ||
mshadow::Stream<xpu> *s = ctx.get_stream<xpu>(); | ||
const TBlob& out_grad = inputs[0]; | ||
const TBlob& in_data = inputs[1]; | ||
const TBlob& in_grad = outputs[0]; | ||
const QuadraticParam& param = nnvm::get<QuadraticParam>(attrs.parsed); | ||
using namespace mxnet_op; | ||
MSHADOW_TYPE_SWITCH(out_grad.type_flag_, DType, { | ||
MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, { | ||
Kernel<quadratic_backward<req_type>, xpu>::Launch( | ||
s, in_grad.Size(), in_grad.dptr<DType>(), out_grad.dptr<DType>(), | ||
in_data.dptr<DType>(), param.a, param.b); | ||
}); | ||
}); | ||
} | ||
|
||
} // namespace op | ||
} // namespace mxnet | ||
|
||
#endif // MXNET_OPERATOR_TENSOR_CUMULATIVE_OP_H_ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters