Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
Correct update count with Gluon trainer and update_on_kvstore=False (#…
Browse files Browse the repository at this point in the history
…14377)

* LRScheduler with update_on_kvstore=False

* Cleaning trainer.py

* Retrigger CI

* Fixes from review
  • Loading branch information
ptrendx authored and nswamy committed Apr 5, 2019
1 parent 09a4d64 commit 711b8b5
Show file tree
Hide file tree
Showing 3 changed files with 28 additions and 14 deletions.
4 changes: 0 additions & 4 deletions python/mxnet/gluon/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -241,10 +241,6 @@ def _init_kvstore(self):
kvstore.set_optimizer(self._optimizer)
self._kvstore = kvstore
self._update_on_kvstore = update_on_kvstore
if self._optimizer.lr_scheduler and not self._update_on_kvstore:
raise ValueError("update_on_kvstore=False does not support " \
"optimizer with LRScheduler. Please " \
"consider setting learning rate manually.")
else:
self._kvstore = None
self._update_on_kvstore = None
Expand Down
17 changes: 16 additions & 1 deletion python/mxnet/optimizer/optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -106,7 +106,8 @@ def __init__(self, rescale_grad=1., param_idx2name=None, wd=0.,
self.wd_mult = {}
self.begin_num_update = begin_num_update
self.num_update = begin_num_update
self._index_update_count = {}
self._all_index_update_counts = {0 : {}}
self._index_update_count = self._all_index_update_counts[0]
self.clip_gradient = clip_gradient
self.multi_precision = multi_precision
self.aggregate_num = 0
Expand Down Expand Up @@ -380,6 +381,18 @@ def set_wd_mult(self, args_wd_mult):
self.wd_mult[name] = float(attr[name]['__wd_mult__'])
self.wd_mult.update(args_wd_mult)

def _set_current_context(self, device_id):
"""Sets the number of the currently handled device.
Parameters
----------
device_id : int
The number of current device.
"""
if device_id not in self._all_index_update_counts:
self._all_index_update_counts[device_id] = {}
self._index_update_count = self._all_index_update_counts[device_id]

def _update_count(self, index):
"""Updates num_update.
Expand Down Expand Up @@ -1623,6 +1636,8 @@ def __call__(self, index, grad, weight):
indices = index
grads = grad
weights = weight
if weights:
self.optimizer._set_current_context(weights[0].context.device_id)
for i, idx in enumerate(indices):
# convert ctypes.char_p.value back to python str if needed
if isinstance(idx, bytes):
Expand Down
21 changes: 12 additions & 9 deletions tests/python/unittest/test_gluon_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -272,19 +272,22 @@ def test_trainer_lr_sched():
lr *= factor
mx.nd.waitall()

@with_seed()
def test_trainer_invalid_lr_sched():
# Update on kvstore = False
x = gluon.Parameter('x', shape=(10,))
x.initialize(ctx=[mx.cpu(0), mx.cpu(1)], init='zeros')
freq = 2
factor = 0.1
lr = 1
lr_sched = mx.lr_scheduler.FactorScheduler(freq, factor=factor, base_lr=lr)
invalid_trainer = gluon.Trainer([x], 'sgd', {'learning_rate': lr, 'lr_scheduler': lr_sched},
update_on_kvstore=False)
with mx.autograd.record():
for w in x.list_data():
y = w + 1
y.backward()
assert_raises(ValueError, invalid_trainer.step, 1)
trainer = gluon.Trainer([x], 'sgd', {'learning_rate': lr, 'lr_scheduler': lr_sched},
update_on_kvstore=False)
for i in range(10):
with mx.autograd.record():
for w in x.list_data():
y = w + 1
y.backward()
trainer.step(1)
if i % freq == 0:
assert trainer.learning_rate == lr, (lr, trainer.learning_rate, i)
lr *= factor
mx.nd.waitall()

0 comments on commit 711b8b5

Please sign in to comment.