This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Numpy] Numpy behavior random.uniform() (#15858)
* numpy behavior uniform sampling implemented * improve code style according to review comment * remove rebundant namespace
- Loading branch information
Showing
8 changed files
with
676 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* Copyright (c) 2015 by Contributors | ||
* \file dist_common.h | ||
* \brief Function definition of common functions for distributions | ||
* \with two parameters. | ||
*/ | ||
|
||
#ifndef MXNET_OPERATOR_NUMPY_RANDOM_DIST_COMMON_H_ | ||
#define MXNET_OPERATOR_NUMPY_RANDOM_DIST_COMMON_H_ | ||
|
||
#include <mshadow/base.h> | ||
#include <mxnet/operator_util.h> | ||
#include <algorithm> | ||
#include <string> | ||
#include <vector> | ||
#include "../../elemwise_op_common.h" | ||
#include "../../mshadow_op.h" | ||
#include "../../mxnet_op.h" | ||
#include "../../operator_common.h" | ||
#include "../../tensor/elemwise_binary_broadcast_op.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
inline int FillShape(const mxnet::TShape &lshape, const mxnet::TShape &rshape, | ||
const mxnet::TShape &oshape, mxnet::TShape *new_lshape, | ||
mxnet::TShape *new_rshape, mxnet::TShape *new_oshape) { | ||
const int odim = std::max(oshape.ndim(), broadcast::MAX_DIM); | ||
*new_lshape = mxnet::TShape(odim, 1); | ||
*new_rshape = mxnet::TShape(odim, 1); | ||
*new_oshape = mxnet::TShape(odim, 1); | ||
int bl = oshape.ndim() - lshape.ndim(); | ||
int br = oshape.ndim() - rshape.ndim(); | ||
int j = 0, lprod = 1, rprod = 1, oprod = 1; | ||
for (int i = 0; i < oshape.ndim(); ++i) { | ||
int l = 1; | ||
int r = 1; | ||
int o = oshape[i]; | ||
if (i >= bl) l = lshape[i - bl]; | ||
if (i >= br) r = rshape[i - br]; | ||
if ((lprod != rprod || lprod != oprod || l != r || l != o) && | ||
(lprod * l > 1 || rprod * r > 1 || oprod * o > 1)) { | ||
(*new_lshape)[j] = lprod; | ||
(*new_rshape)[j] = rprod; | ||
(*new_oshape)[j] = oprod; | ||
lprod = rprod = oprod = 1; | ||
++j; | ||
} | ||
lprod *= l; | ||
rprod *= r; | ||
oprod *= o; | ||
} | ||
if (lprod > 1 || rprod > 1 || oprod > 1) { | ||
(*new_lshape)[j] = lprod; | ||
(*new_rshape)[j] = rprod; | ||
(*new_oshape)[j] = oprod; | ||
++j; | ||
} | ||
if (j <= broadcast::MAX_DIM) { | ||
BROADCAST_NDIM_SWITCH(j, NDim, { | ||
new_lshape->assign(new_lshape->begin(), new_lshape->begin() + NDim); | ||
new_rshape->assign(new_rshape->begin(), new_rshape->begin() + NDim); | ||
new_oshape->assign(new_oshape->begin(), new_oshape->begin() + NDim); | ||
}); | ||
} else { | ||
LOG(FATAL) << "Too many broadcast dimensions with operands " << lshape | ||
<< " " << rshape; | ||
} | ||
return j; | ||
} | ||
|
||
inline void CheckBroadcastable(const mxnet::TShape &from, | ||
const mxnet::TShape &to) { | ||
const int bl = to.ndim() - from.ndim(); | ||
const int br = 0; | ||
for (int i = 0; i < to.ndim(); ++i) { | ||
int l = 1, r = 1; | ||
if (i >= bl) l = from[i - bl]; | ||
if (i >= br) r = to[i - br]; | ||
if (!mxnet::dim_size_is_known(l) || !mxnet::dim_size_is_known(r)) continue; | ||
if (l != r) { | ||
// Make it compatible with NumPy. | ||
// For example, (2, 3) cannot broadcast to (2, 0, 3), but (1, 3) can | ||
// broadcast to (2, 0, 3). | ||
CHECK(l == 1 || r == 1) | ||
<< "operands could not be broadcast together with shapes " << from | ||
<< " " << to; | ||
} | ||
} | ||
} | ||
|
||
inline void InferBroadcastShape(const mxnet::TShape &lhs, | ||
const mxnet::TShape &rhs, | ||
mxnet::TShape *out_ptr) { | ||
mxnet::TShape &out = (*out_ptr); | ||
const int bl = out.ndim() - lhs.ndim(); | ||
const int br = out.ndim() - rhs.ndim(); | ||
for (int i = 0; i < out.ndim(); ++i) { | ||
int l = 1, r = 1; | ||
if (i >= bl) l = lhs[i - bl]; | ||
if (i >= br) r = rhs[i - br]; | ||
if (!mxnet::dim_size_is_known(l) || !mxnet::dim_size_is_known(r)) continue; | ||
if (l != r) { | ||
// Make it compatible with NumPy. | ||
// For example, (2, 3) cannot broadcast to (2, 0, 3), but (1, 3) can | ||
// broadcast to (2, 0, 3). | ||
CHECK(l == 1 || r == 1) | ||
<< "operands could not be broadcast together with shapes " << lhs | ||
<< " " << rhs; | ||
out[i] = (l == 1 ? r : l); | ||
} else { | ||
out[i] = l; | ||
} | ||
} | ||
} | ||
|
||
template <typename DistParam> | ||
inline bool TwoparamsDistOpShape(const nnvm::NodeAttrs &attrs, | ||
std::vector<TShape> *in_attrs, | ||
std::vector<TShape> *out_attrs) { | ||
const DistParam ¶m = nnvm::get<DistParam>(attrs.parsed); | ||
CHECK_EQ(out_attrs->size(), 1U); | ||
if (param.size.has_value()) { | ||
// Size declared. | ||
std::vector<dim_t> oshape_vec; | ||
const mxnet::Tuple<int> &size = param.size.value(); | ||
for (int i = 0; i < size.ndim(); ++i) { | ||
oshape_vec.emplace_back(size[i]); | ||
} | ||
SHAPE_ASSIGN_CHECK(*out_attrs, 0, TShape(oshape_vec)); | ||
for (size_t input_idx = 0; input_idx < in_attrs->size(); input_idx++) { | ||
CheckBroadcastable((*in_attrs)[input_idx], (*out_attrs)[0]); | ||
} | ||
} else { | ||
// Size undeclared. | ||
if (in_attrs->size() == 2U) { | ||
// Both params from ndarray. | ||
mxnet::TShape &low = (*in_attrs)[0]; | ||
mxnet::TShape &high = (*in_attrs)[1]; | ||
mxnet::TShape out(std::max(low.ndim(), high.ndim()), -1); | ||
InferBroadcastShape(low, high, &out); | ||
SHAPE_ASSIGN_CHECK(*out_attrs, 0, out); | ||
} else if (in_attrs->size() == 1U) { | ||
// One param from ndarray. | ||
SHAPE_ASSIGN_CHECK(*out_attrs, 0, in_attrs->at(0)) | ||
} else if (in_attrs->size() == 0) { | ||
// Two scalar case. | ||
SHAPE_ASSIGN_CHECK(*out_attrs, 0, TShape(0, -1)) | ||
return true; | ||
} | ||
} | ||
return out_attrs->at(0).ndim() != 0U; | ||
} | ||
|
||
} // namespace op | ||
} // namespace mxnet | ||
|
||
#endif // MXNET_OPERATOR_NUMPY_RANDOM_DIST_COMMON_H_ */ |
Oops, something went wrong.