This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add resnet50-v1 to benchmark_score (#12595)
* add resnet50-v1 to benchmark_score * rename back and duplicated * rename v2 back to resnet.py
- Loading branch information
1 parent
167355b
commit 3c3506f
Showing
2 changed files
with
202 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,200 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
''' | ||
Adapted from https://github.com/tornadomeet/ResNet/blob/master/symbol_resnet.py | ||
(Original author Wei Wu) by Antti-Pekka Hynninen | ||
Implementing the original resnet ILSVRC 2015 winning network from: | ||
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. "Deep Residual Learning for Image Recognition" | ||
''' | ||
import mxnet as mx | ||
import numpy as np | ||
|
||
def residual_unit(data, num_filter, stride, dim_match, name, bottle_neck=True, bn_mom=0.9, workspace=256, memonger=False): | ||
"""Return ResNet Unit symbol for building ResNet | ||
Parameters | ||
---------- | ||
data : str | ||
Input data | ||
num_filter : int | ||
Number of output channels | ||
bnf : int | ||
Bottle neck channels factor with regard to num_filter | ||
stride : tuple | ||
Stride used in convolution | ||
dim_match : Boolean | ||
True means channel number between input and output is the same, otherwise means differ | ||
name : str | ||
Base name of the operators | ||
workspace : int | ||
Workspace used in convolution operator | ||
""" | ||
if bottle_neck: | ||
conv1 = mx.sym.Convolution(data=data, num_filter=int(num_filter*0.25), kernel=(1,1), stride=stride, pad=(0,0), | ||
no_bias=True, workspace=workspace, name=name + '_conv1') | ||
bn1 = mx.sym.BatchNorm(data=conv1, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn1') | ||
act1 = mx.sym.Activation(data=bn1, act_type='relu', name=name + '_relu1') | ||
conv2 = mx.sym.Convolution(data=act1, num_filter=int(num_filter*0.25), kernel=(3,3), stride=(1,1), pad=(1,1), | ||
no_bias=True, workspace=workspace, name=name + '_conv2') | ||
bn2 = mx.sym.BatchNorm(data=conv2, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn2') | ||
act2 = mx.sym.Activation(data=bn2, act_type='relu', name=name + '_relu2') | ||
conv3 = mx.sym.Convolution(data=act2, num_filter=num_filter, kernel=(1,1), stride=(1,1), pad=(0,0), no_bias=True, | ||
workspace=workspace, name=name + '_conv3') | ||
bn3 = mx.sym.BatchNorm(data=conv3, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_bn3') | ||
|
||
if dim_match: | ||
shortcut = data | ||
else: | ||
conv1sc = mx.sym.Convolution(data=data, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True, | ||
workspace=workspace, name=name+'_conv1sc') | ||
shortcut = mx.sym.BatchNorm(data=conv1sc, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + '_sc') | ||
if memonger: | ||
shortcut._set_attr(mirror_stage='True') | ||
return mx.sym.Activation(data=bn3 + shortcut, act_type='relu', name=name + '_relu3') | ||
else: | ||
conv1 = mx.sym.Convolution(data=data, num_filter=num_filter, kernel=(3,3), stride=stride, pad=(1,1), | ||
no_bias=True, workspace=workspace, name=name + '_conv1') | ||
bn1 = mx.sym.BatchNorm(data=conv1, fix_gamma=False, momentum=bn_mom, eps=2e-5, name=name + '_bn1') | ||
act1 = mx.sym.Activation(data=bn1, act_type='relu', name=name + '_relu1') | ||
conv2 = mx.sym.Convolution(data=act1, num_filter=num_filter, kernel=(3,3), stride=(1,1), pad=(1,1), | ||
no_bias=True, workspace=workspace, name=name + '_conv2') | ||
bn2 = mx.sym.BatchNorm(data=conv2, fix_gamma=False, momentum=bn_mom, eps=2e-5, name=name + '_bn2') | ||
|
||
if dim_match: | ||
shortcut = data | ||
else: | ||
conv1sc = mx.sym.Convolution(data=data, num_filter=num_filter, kernel=(1,1), stride=stride, no_bias=True, | ||
workspace=workspace, name=name+'_conv1sc') | ||
shortcut = mx.sym.BatchNorm(data=conv1sc, fix_gamma=False, momentum=bn_mom, eps=2e-5, name=name + '_sc') | ||
if memonger: | ||
shortcut._set_attr(mirror_stage='True') | ||
return mx.sym.Activation(data=bn2 + shortcut, act_type='relu', name=name + '_relu3') | ||
|
||
def resnet(units, num_stages, filter_list, num_classes, image_shape, bottle_neck=True, bn_mom=0.9, workspace=256, dtype='float32', memonger=False): | ||
"""Return ResNet symbol of | ||
Parameters | ||
---------- | ||
units : list | ||
Number of units in each stage | ||
num_stages : int | ||
Number of stage | ||
filter_list : list | ||
Channel size of each stage | ||
num_classes : int | ||
Ouput size of symbol | ||
dataset : str | ||
Dataset type, only cifar10 and imagenet supports | ||
workspace : int | ||
Workspace used in convolution operator | ||
dtype : str | ||
Precision (float32 or float16) | ||
""" | ||
num_unit = len(units) | ||
assert(num_unit == num_stages) | ||
data = mx.sym.Variable(name='data') | ||
if dtype == 'float32': | ||
data = mx.sym.identity(data=data, name='id') | ||
else: | ||
if dtype == 'float16': | ||
data = mx.sym.Cast(data=data, dtype=np.float16) | ||
(nchannel, height, width) = image_shape | ||
if height <= 32: # such as cifar10 | ||
body = mx.sym.Convolution(data=data, num_filter=filter_list[0], kernel=(3, 3), stride=(1,1), pad=(1, 1), | ||
no_bias=True, name="conv0", workspace=workspace) | ||
# Is this BatchNorm supposed to be here? | ||
body = mx.sym.BatchNorm(data=body, fix_gamma=False, eps=2e-5, momentum=bn_mom, name='bn0') | ||
else: # often expected to be 224 such as imagenet | ||
body = mx.sym.Convolution(data=data, num_filter=filter_list[0], kernel=(7, 7), stride=(2,2), pad=(3, 3), | ||
no_bias=True, name="conv0", workspace=workspace) | ||
body = mx.sym.BatchNorm(data=body, fix_gamma=False, eps=2e-5, momentum=bn_mom, name='bn0') | ||
body = mx.sym.Activation(data=body, act_type='relu', name='relu0') | ||
body = mx.sym.Pooling(data=body, kernel=(3, 3), stride=(2,2), pad=(1,1), pool_type='max') | ||
|
||
for i in range(num_stages): | ||
body = residual_unit(body, filter_list[i+1], (1 if i==0 else 2, 1 if i==0 else 2), False, | ||
name='stage%d_unit%d' % (i + 1, 1), bottle_neck=bottle_neck, workspace=workspace, | ||
memonger=memonger) | ||
for j in range(units[i]-1): | ||
body = residual_unit(body, filter_list[i+1], (1,1), True, name='stage%d_unit%d' % (i + 1, j + 2), | ||
bottle_neck=bottle_neck, workspace=workspace, memonger=memonger) | ||
# bn1 = mx.sym.BatchNorm(data=body, fix_gamma=False, eps=2e-5, momentum=bn_mom, name='bn1') | ||
# relu1 = mx.sym.Activation(data=bn1, act_type='relu', name='relu1') | ||
# Although kernel is not used here when global_pool=True, we should put one | ||
pool1 = mx.sym.Pooling(data=body, global_pool=True, kernel=(7, 7), pool_type='avg', name='pool1') | ||
flat = mx.sym.Flatten(data=pool1) | ||
fc1 = mx.sym.FullyConnected(data=flat, num_hidden=num_classes, name='fc1') | ||
if dtype == 'float16': | ||
fc1 = mx.sym.Cast(data=fc1, dtype=np.float32) | ||
return mx.sym.SoftmaxOutput(data=fc1, name='softmax') | ||
|
||
def get_symbol(num_classes, num_layers, image_shape, conv_workspace=256, dtype='float32', **kwargs): | ||
""" | ||
Adapted from https://github.com/tornadomeet/ResNet/blob/master/symbol_resnet.py | ||
(Original author Wei Wu) by Antti-Pekka Hynninen | ||
Implementing the original resnet ILSVRC 2015 winning network from: | ||
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. "Deep Residual Learning for Image Recognition" | ||
""" | ||
image_shape = [int(l) for l in image_shape.split(',')] | ||
(nchannel, height, width) = image_shape | ||
if height <= 28: | ||
num_stages = 3 | ||
if (num_layers-2) % 9 == 0 and num_layers >= 164: | ||
per_unit = [(num_layers-2)//9] | ||
filter_list = [16, 64, 128, 256] | ||
bottle_neck = True | ||
elif (num_layers-2) % 6 == 0 and num_layers < 164: | ||
per_unit = [(num_layers-2)//6] | ||
filter_list = [16, 16, 32, 64] | ||
bottle_neck = False | ||
else: | ||
raise ValueError("no experiments done on num_layers {}, you can do it yourself".format(num_layers)) | ||
units = per_unit * num_stages | ||
else: | ||
if num_layers >= 50: | ||
filter_list = [64, 256, 512, 1024, 2048] | ||
bottle_neck = True | ||
else: | ||
filter_list = [64, 64, 128, 256, 512] | ||
bottle_neck = False | ||
num_stages = 4 | ||
if num_layers == 18: | ||
units = [2, 2, 2, 2] | ||
elif num_layers == 34: | ||
units = [3, 4, 6, 3] | ||
elif num_layers == 50: | ||
units = [3, 4, 6, 3] | ||
elif num_layers == 101: | ||
units = [3, 4, 23, 3] | ||
elif num_layers == 152: | ||
units = [3, 8, 36, 3] | ||
elif num_layers == 200: | ||
units = [3, 24, 36, 3] | ||
elif num_layers == 269: | ||
units = [3, 30, 48, 8] | ||
else: | ||
raise ValueError("no experiments done on num_layers {}, you can do it yourself".format(num_layers)) | ||
|
||
return resnet(units = units, | ||
num_stages = num_stages, | ||
filter_list = filter_list, | ||
num_classes = num_classes, | ||
image_shape = image_shape, | ||
bottle_neck = bottle_neck, | ||
workspace = conv_workspace, | ||
dtype = dtype) |