Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
Add unittest
Browse files Browse the repository at this point in the history
  • Loading branch information
junrushao committed Mar 4, 2019
1 parent a23d554 commit 319ee39
Showing 1 changed file with 54 additions and 0 deletions.
54 changes: 54 additions & 0 deletions tests/python/unittest/test_dynamic_shape.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

import numpy as np
import mxnet as mx
from mxnet import gluon
from numpy.testing import assert_allclose, assert_array_equal
from mxnet.test_utils import *
from mxnet.base import _as_list
from mxnet.attribute import AttrScope
from common import with_seed


def test_dynamic_shape():

class _TestBlock(gluon.HybridBlock):

def __init__(self):
super(_TestBlock, self).__init__()

def hybrid_forward(self, F, data, index):
return F.contrib.boolean_mask(data, index)

block = _TestBlock()
block.hybridize()
data = mx.nd.array([[1, 2, 3],[4, 5, 6],[7, 8, 9]])
index = mx.nd.array([0, 1, 1])
data.attach_grad()
with mx.autograd.record():
result = block(data, index)
result.backward()
result_nd = np.array([[4, 5, 6], [7, 8, 9]])
data_grad_nd = np.array([[0., 0., 0.], [1., 1., 1.], [1., 1., 1.]])
assert_almost_equal(result.asnumpy(), result_nd)
assert_almost_equal(data.grad.asnumpy(), data_grad_nd)


if __name__ == '__main__':
import nose
nose.runmodule()

0 comments on commit 319ee39

Please sign in to comment.