This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[v2.0] Split Large Source Files (#20604)
* split np_kron * refactor more * fix sanity * fix * fix param * fix np_where
- Loading branch information
Showing
28 changed files
with
1,103 additions
and
512 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,193 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* Copyright (c) 2019 by Contributors | ||
* \file np_broadcast_reduce_op_value.h | ||
* \brief Definition of broadcast and reduce functions based on value. | ||
*/ | ||
|
||
#ifndef MXNET_OPERATOR_NUMPY_NP_BROADCAST_REDUCE_OP_VALUE_H_ | ||
#define MXNET_OPERATOR_NUMPY_NP_BROADCAST_REDUCE_OP_VALUE_H_ | ||
|
||
#include <string> | ||
#include <vector> | ||
|
||
#if MXNET_USE_TVM_OP | ||
#include "../tvmop/op_module.h" | ||
#endif // MXNET_USE_TVM_OP | ||
|
||
#include "np_broadcast_reduce_op.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
inline bool NumpySumType(const nnvm::NodeAttrs& attrs, | ||
std::vector<int>* in_attrs, | ||
std::vector<int>* out_attrs) { | ||
CHECK_EQ(in_attrs->size(), 1U); | ||
CHECK_EQ(out_attrs->size(), 1U); | ||
const NumpyReduceAxesParam& param = nnvm::get<NumpyReduceAxesParam>(attrs.parsed); | ||
|
||
if (param.dtype.has_value()) { | ||
if (in_attrs->at(0) == mshadow::kBool) { | ||
CHECK(param.dtype.value() == mshadow::kInt32 || param.dtype.value() == mshadow::kInt64 || | ||
param.dtype.value() == mshadow::kFloat32 || param.dtype.value() == mshadow::kFloat64) | ||
<< "Only support the following output dtypes when input dtype is bool: " | ||
"int32, int64, float32, float64."; | ||
} | ||
TYPE_ASSIGN_CHECK(*out_attrs, 0, param.dtype.value()); | ||
} else if (in_attrs->at(0) == mshadow::kBool) { | ||
TYPE_ASSIGN_CHECK(*out_attrs, 0, mshadow::kInt64); | ||
} else { | ||
TYPE_ASSIGN_CHECK(*out_attrs, 0, in_attrs->at(0)); | ||
TYPE_ASSIGN_CHECK(*in_attrs, 0, out_attrs->at(0)); | ||
} | ||
|
||
return out_attrs->at(0) != -1 && in_attrs->at(0) != -1; | ||
} | ||
|
||
#if MXNET_USE_TVM_OP | ||
static constexpr int max_reduce_ndim = 5; | ||
TBlob PrependAxes(const TBlob& src, const int dst_ndim); | ||
#endif // MXNET_USE_TVM_OP | ||
|
||
inline void TVMOpReduce(const OpContext& ctx, | ||
const TBlob& input, | ||
const dmlc::optional<mxnet::Tuple<int>>& axis, | ||
const TBlob& output, | ||
const OpReqType req, | ||
const std::string& reducer_name) { | ||
#if MXNET_USE_TVM_OP | ||
CHECK_GE(input.ndim(), output.ndim()); | ||
CHECK_LE(input.ndim(), max_reduce_ndim) | ||
<< "TVMOpReduce only supports ndim <= " << max_reduce_ndim; | ||
|
||
const TBlob expanded_output = | ||
(input.ndim() == output.ndim() | ||
? output | ||
: output.reshape(NumpyReduceAxesShapeImpl(input.shape_, axis, true))); | ||
CHECK_EQ(input.ndim(), expanded_output.ndim()); | ||
int reduce1st_dim = 0; | ||
if (input.ndim() > 0 && input.size(0) != expanded_output.size(0)) { | ||
reduce1st_dim = 1; | ||
} | ||
// collapse consecutive dimensions where reduction are performed or not performed | ||
std::vector<index_t> ishape_vec; | ||
for (int i = 0; i < input.ndim(); ++i) { | ||
if (i == 0 || ((input.size(i) != expanded_output.size(i)) != | ||
(input.size(i - 1) != expanded_output.size(i - 1)))) { | ||
ishape_vec.push_back(input.size(i)); | ||
} else { | ||
ishape_vec.back() *= input.size(i); | ||
} | ||
} | ||
// append axes after collapsed ishape to reach the max ndim allowed | ||
for (int i = ishape_vec.size(); i < max_reduce_ndim; ++i) { | ||
ishape_vec.push_back(1); | ||
} | ||
std::vector<index_t> oshape_vec; | ||
for (size_t i = reduce1st_dim; i < ishape_vec.size(); i += 2) { | ||
oshape_vec.push_back(ishape_vec[i]); | ||
} | ||
TShape ishape(ishape_vec.begin(), ishape_vec.end()), oshape(oshape_vec.begin(), oshape_vec.end()); | ||
TBlob input_tvm = input.reshape(ishape); | ||
TBlob output_tvm = output.reshape(oshape); | ||
const std::string ctx_name = | ||
(ctx.run_ctx.ctx.dev_type == mxnet::Context::DeviceType::kCPU) ? "cpu" : "gpu"; | ||
std::ostringstream func_name; | ||
func_name << reducer_name << "_" | ||
<< (ctx.run_ctx.ctx.dev_type == mxnet::Context::DeviceType::kCPU ? "cpu" : "gpu") | ||
<< "reduce1st_dim_" << reduce1st_dim << "req_" | ||
<< (req == kWriteTo ? "kWriteTo" : "kAddTo"); | ||
tvm::runtime::TVMOpModule::Get()->Call(func_name.str(), ctx, {input_tvm, output_tvm, output_tvm}); | ||
#else | ||
LOG(FATAL) << "Please add USE_TVM_OP=1 as a compile flag to enable TVM-generated kernels."; | ||
#endif // MXNET_USE_TVM_OP | ||
} | ||
|
||
inline bool NumpyReduceAxesNoDTypeType(const nnvm::NodeAttrs& attrs, | ||
std::vector<int>* in_attrs, | ||
std::vector<int>* out_attrs) { | ||
CHECK_EQ(in_attrs->size(), 1U); | ||
CHECK_EQ(out_attrs->size(), 1U); | ||
TYPE_ASSIGN_CHECK(*out_attrs, 0, in_attrs->at(0)); | ||
TYPE_ASSIGN_CHECK(*in_attrs, 0, out_attrs->at(0)); | ||
|
||
return out_attrs->at(0) != -1 && in_attrs->at(0) != -1; | ||
} | ||
|
||
inline bool IsIntType(const int dtype) { | ||
return (dtype == mshadow::kUint8 || dtype == mshadow::kInt32 || dtype == mshadow::kInt8 || | ||
dtype == mshadow::kInt64); | ||
} | ||
|
||
inline bool NumpyMeanType(const nnvm::NodeAttrs& attrs, | ||
std::vector<int>* in_attrs, | ||
std::vector<int>* out_attrs) { | ||
CHECK_EQ(in_attrs->size(), 1U); | ||
CHECK_EQ(out_attrs->size(), 1U); | ||
const NumpyReduceAxesParam& param = nnvm::get<NumpyReduceAxesParam>(attrs.parsed); | ||
|
||
if (param.dtype.has_value()) { | ||
TYPE_ASSIGN_CHECK(*out_attrs, 0, param.dtype.value()); | ||
} else { | ||
if (common::is_float(in_attrs->at(0))) { | ||
TYPE_ASSIGN_CHECK(*out_attrs, 0, in_attrs->at(0)); | ||
TYPE_ASSIGN_CHECK(*in_attrs, 0, out_attrs->at(0)); | ||
} else { | ||
TYPE_ASSIGN_CHECK(*out_attrs, 0, mxnet::common::GetDefaultDtype()); | ||
} | ||
} | ||
|
||
return out_attrs->at(0) != -1 && in_attrs->at(0) != -1; | ||
} | ||
|
||
inline bool NumpyBroadcastToShape(const nnvm::NodeAttrs& attrs, | ||
mxnet::ShapeVector* in_attrs, | ||
mxnet::ShapeVector* out_attrs) { | ||
CHECK_EQ(in_attrs->size(), 1U); | ||
CHECK_EQ(out_attrs->size(), 1U); | ||
mxnet::TShape& ishape = (*in_attrs)[0]; | ||
if (!mxnet::shape_is_known(ishape)) | ||
return false; | ||
const BroadcastToParam& param = nnvm::get<BroadcastToParam>(attrs.parsed); | ||
CHECK_LE(ishape.ndim(), param.shape.ndim()) | ||
<< "shape " << ishape << " is not broadcastable to " << param.shape; | ||
TShape pshape = param.shape; | ||
for (int i = param.shape.ndim() - 1; i >= 0; --i) { | ||
int j = i - param.shape.ndim() + ishape.ndim(); | ||
if (j < 0) | ||
break; | ||
if (pshape[i] == -2) { | ||
pshape[i] = ishape[j]; | ||
} | ||
CHECK(ishape[j] == pshape[i] || ishape[j] == 1) | ||
<< "shape " << ishape << " is not broadcastable to " << pshape; | ||
} | ||
CHECK(mxnet::shape_is_known(pshape)) | ||
<< "the objective shape for broadcasting array must be known"; | ||
SHAPE_ASSIGN_CHECK(*out_attrs, 0, pshape); | ||
return true; | ||
} | ||
|
||
} // namespace op | ||
} // namespace mxnet | ||
|
||
#endif // MXNET_OPERATOR_NUMPY_NP_BROADCAST_REDUCE_OP_VALUE_H_ |
64 changes: 64 additions & 0 deletions
64
src/operator/numpy/np_broadcast_reduce_op_value_broadcast_to.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* Copyright (c) 2019 by Contributors | ||
* \file np_broadcast_reduce_op_value_broadcast_to.cc | ||
* \brief CPU Implementation of broadcast and reduce functions based on value. | ||
*/ | ||
|
||
#if MXNET_USE_TVM_OP | ||
#include "../tvmop/op_module.h" | ||
#endif // MXNET_USE_TVM_OP | ||
|
||
#include "np_broadcast_reduce_op_value.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
NNVM_REGISTER_OP(_npi_broadcast_to) | ||
.set_num_inputs(1) | ||
.set_num_outputs(1) | ||
.set_attr<nnvm::FListInputNames>("FListInputNames", | ||
[](const NodeAttrs& attrs) { | ||
return std::vector<std::string>{"array"}; | ||
}) | ||
.set_attr<nnvm::FInferType>("FInferType", ElemwiseType<1, 1>) | ||
.set_attr<nnvm::FGradient>("FGradient", | ||
[](const nnvm::ObjectPtr& n, | ||
const std::vector<nnvm::NodeEntry>& ograds) { | ||
return MakeNonlossGradNode( | ||
"_backward_np_broadcast_to", n, ograds, {}, n->attrs.dict); | ||
}) | ||
.add_argument("array", "NDArray-or-Symbol", "The input") | ||
.set_attr_parser(ParamParser<BroadcastToParam>) | ||
.add_arguments(BroadcastToParam::__FIELDS__()) | ||
.set_attr<mxnet::FInferShape>("FInferShape", NumpyBroadcastToShape) | ||
.set_attr<FCompute>("FCompute<cpu>", NumpyBroadcastToForward<cpu>); | ||
|
||
NNVM_REGISTER_OP(_backward_np_broadcast_to) | ||
.set_attr_parser(ParamParser<BroadcastToParam>) | ||
.set_attr<nnvm::TIsBackward>("TIsBackward", true) | ||
.set_attr<FCompute>("FCompute<cpu>", NumpyBroadcastToBackward<cpu>) | ||
.set_attr<FResourceRequest>("FResourceRequest", [](const NodeAttrs& attrs) { | ||
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; | ||
}); | ||
|
||
} // namespace op | ||
} // namespace mxnet |
37 changes: 37 additions & 0 deletions
37
src/operator/numpy/np_broadcast_reduce_op_value_broadcast_to.cu
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one | ||
* or more contributor license agreements. See the NOTICE file | ||
* distributed with this work for additional information | ||
* regarding copyright ownership. The ASF licenses this file | ||
* to you under the Apache License, Version 2.0 (the | ||
* "License"); you may not use this file except in compliance | ||
* with the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, | ||
* software distributed under the License is distributed on an | ||
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
* KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations | ||
* under the License. | ||
*/ | ||
|
||
/*! | ||
* Copyright (c) 2019 by Contributors | ||
* \file np_broadcast_reduce_op_value_broadcast_to.cu | ||
* \brief GPU Implementation of reduce functions based on value. | ||
*/ | ||
#include "np_broadcast_reduce_op.h" | ||
|
||
namespace mxnet { | ||
namespace op { | ||
|
||
NNVM_REGISTER_OP(_npi_broadcast_to) | ||
.set_attr<FCompute>("FCompute<gpu>", NumpyBroadcastToForward<gpu>); | ||
|
||
NNVM_REGISTER_OP(_backward_np_broadcast_to) | ||
.set_attr<FCompute>("FCompute<gpu>", NumpyBroadcastToBackward<gpu>); | ||
|
||
} // namespace op | ||
} // namespace mxnet |
Oops, something went wrong.