This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add tests for reshape inverse shape inference
- Loading branch information
Showing
4 changed files
with
238 additions
and
140 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,203 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
from __future__ import print_function | ||
import sys | ||
import os | ||
import time | ||
import multiprocessing as mp | ||
import unittest | ||
import mxnet as mx | ||
import numpy as np | ||
import unittest | ||
from nose.tools import assert_raises | ||
from mxnet.test_utils import check_consistency, set_default_context, assert_almost_equal | ||
from mxnet.base import MXNetError | ||
from mxnet import autograd | ||
from numpy.testing import assert_allclose | ||
|
||
curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__))) | ||
sys.path.insert(0, os.path.join(curr_path, '../unittest')) | ||
from common import setup_module, with_seed, teardown, assert_raises_cudnn_disabled | ||
from test_gluon import * | ||
from test_loss import * | ||
from test_gluon_rnn import * | ||
|
||
set_default_context(mx.gpu(0)) | ||
|
||
def check_rnn_layer(layer): | ||
layer.collect_params().initialize(ctx=[mx.cpu(0), mx.gpu(0)]) | ||
with mx.gpu(0): | ||
x = mx.nd.ones((10, 16, 30)) | ||
states = layer.begin_state(16) | ||
go, gs = layer(x, states) | ||
|
||
with mx.cpu(0): | ||
x = mx.nd.ones((10, 16, 30)) | ||
states = layer.begin_state(16) | ||
co, cs = layer(x, states) | ||
|
||
# atol of 1e-6 required, as exposed by seed 2124685726 | ||
assert_almost_equal(go.asnumpy(), co.asnumpy(), rtol=1e-2, atol=1e-6) | ||
for g, c in zip(gs, cs): | ||
assert_almost_equal(g.asnumpy(), c.asnumpy(), rtol=1e-2, atol=1e-6) | ||
|
||
|
||
def check_rnn_layer_w_rand_inputs(layer): | ||
layer.collect_params().initialize(ctx=[mx.cpu(0), mx.gpu(0)]) | ||
x = mx.nd.uniform(shape=(10, 16, 30)) | ||
with mx.gpu(0): | ||
x = x.copyto(mx.gpu(0)) | ||
states = layer.begin_state(16) | ||
go, gs = layer(x, states) | ||
|
||
with mx.cpu(0): | ||
x = x.copyto(mx.cpu(0)) | ||
states = layer.begin_state(16) | ||
co, cs = layer(x, states) | ||
|
||
assert_almost_equal(go.asnumpy(), co.asnumpy(), rtol=1e-2, atol=1e-6) | ||
for g, c in zip(gs, cs): | ||
assert_almost_equal(g.asnumpy(), c.asnumpy(), rtol=1e-2, atol=1e-6) | ||
|
||
|
||
@with_seed() | ||
@assert_raises_cudnn_disabled() | ||
def test_rnn_layer(): | ||
check_rnn_layer(gluon.rnn.RNN(100, num_layers=3)) | ||
check_rnn_layer(gluon.rnn.RNN(100, activation='tanh', num_layers=3)) | ||
check_rnn_layer(gluon.rnn.LSTM(100, num_layers=3)) | ||
check_rnn_layer(gluon.rnn.GRU(100, num_layers=3)) | ||
|
||
check_rnn_layer(gluon.rnn.LSTM(100, num_layers=3, bidirectional=True)) | ||
check_rnn_layer_w_rand_inputs(gluon.rnn.LSTM(100, num_layers=3, bidirectional=True)) | ||
|
||
|
||
@with_seed() | ||
def test_gluon_ctc_consistency(): | ||
loss = mx.gluon.loss.CTCLoss() | ||
data = mx.nd.arange(0, 4, repeat=40, ctx=mx.gpu(0)).reshape((2,20,4)).flip(axis=0) | ||
cpu_label = mx.nd.array([[2,1,-1,-1],[3,2,2,-1]], ctx=mx.cpu(0)) | ||
gpu_label = mx.nd.array([[2,1,-1,-1],[3,2,2,-1]], ctx=mx.gpu(0)) | ||
|
||
cpu_data = data.copy().as_in_context(mx.cpu(0)) | ||
cpu_data.attach_grad() | ||
with mx.autograd.record(): | ||
l_cpu = loss(cpu_data, cpu_label) | ||
l_cpu.backward() | ||
|
||
gpu_data = data.copyto(mx.gpu(0)) | ||
gpu_data.attach_grad() | ||
with mx.autograd.record(): | ||
l_gpu = loss(gpu_data, gpu_label) | ||
l_gpu.backward() | ||
|
||
assert_almost_equal(cpu_data.grad.asnumpy(), gpu_data.grad.asnumpy(), atol=1e-3, rtol=1e-3) | ||
|
||
|
||
@with_seed() | ||
def test_global_norm_clip_multi_device(): | ||
x1 = mx.nd.ones((3,3), ctx=mx.gpu(0)) | ||
x2 = mx.nd.ones((4,4), ctx=mx.cpu(0)) | ||
norm = gluon.utils.clip_global_norm([x1, x2], 1.0) | ||
assert norm == 5.0 | ||
assert_almost_equal(x1.asnumpy(), np.ones((3,3))/5) | ||
assert_almost_equal(x2.asnumpy(), np.ones((4,4))/5) | ||
|
||
|
||
def _check_batchnorm_result(input, num_devices=1, cuda=False): | ||
from mxnet.gluon.utils import split_and_load | ||
def _find_bn(module): | ||
if isinstance(module, (mx.gluon.nn.BatchNorm, mx.gluon.contrib.nn.SyncBatchNorm)): | ||
return module | ||
elif isinstance(module.module, (mx.gluon.nn.BatchNorm, mx.gluon.contrib.nn.SyncBatchNorm)): | ||
return module.module | ||
|
||
raise RuntimeError('BN not found') | ||
|
||
def _syncParameters(bn1, bn2, ctx): | ||
ctx = input.context | ||
bn2.gamma.set_data(bn1.gamma.data(ctx)) | ||
bn2.beta.set_data(bn1.beta.data(ctx)) | ||
bn2.running_mean.set_data(bn1.running_mean.data(ctx)) | ||
bn2.running_var.set_data(bn1.running_var.data(ctx)) | ||
|
||
input1 = input.copy() | ||
input2 = input.copy() | ||
|
||
if cuda: | ||
input1 = input.as_in_context(mx.gpu(0)) | ||
ctx_list = [mx.gpu(i) for i in range(num_devices)] | ||
else: | ||
ctx_list = [mx.cpu(0) for _ in range(num_devices)] | ||
|
||
nch = input.shape[1] | ||
bn1 = mx.gluon.nn.BatchNorm(in_channels=nch) | ||
bn2 = mx.gluon.contrib.nn.SyncBatchNorm(in_channels=nch, num_devices=num_devices) | ||
|
||
bn1.initialize(ctx=ctx_list[0]) | ||
bn2.initialize(ctx=ctx_list) | ||
|
||
# using the same values for gamma and beta | ||
#_syncParameters(_find_bn(bn1), _find_bn(bn2), ctx_list[0]) | ||
|
||
input1.attach_grad() | ||
inputs2 = split_and_load(input2, ctx_list, batch_axis=0) | ||
for xi in inputs2: | ||
xi.attach_grad() | ||
|
||
with mx.autograd.record(): | ||
output1 = bn1(input1) | ||
output2 = [bn2(xi) for xi in inputs2] | ||
loss1 = (output1 ** 2).sum() | ||
loss2 = [(output ** 2).sum() for output in output2] | ||
mx.autograd.backward(loss1) | ||
mx.autograd.backward(loss2) | ||
|
||
output2 = mx.nd.concat(*[output.as_in_context(input.context) for output in output2], dim=0) | ||
# assert forwarding | ||
assert_almost_equal(input1.asnumpy(), input2.asnumpy(), atol=1e-3, rtol=1e-3) | ||
assert_almost_equal(output1.asnumpy(), output2.asnumpy(), atol=1e-3, rtol=1e-3) | ||
assert_almost_equal(_find_bn(bn1).running_mean.data(ctx_list[0]).asnumpy(), | ||
_find_bn(bn2).running_mean.data(ctx_list[0]).asnumpy(), | ||
atol=1e-3, rtol=1e-3) | ||
assert_almost_equal(_find_bn(bn1).running_var.data(ctx_list[0]).asnumpy(), | ||
_find_bn(bn2).running_var.data(ctx_list[0]).asnumpy(), | ||
atol=1e-3, rtol=1e-3) | ||
input2grad = mx.nd.concat(*[output.grad.as_in_context(input.context) for output in inputs2], dim=0) | ||
assert_almost_equal(input1.grad.asnumpy(), input2grad.asnumpy(), atol=1e-3, rtol=1e-3) | ||
|
||
|
||
def test_sync_batchnorm(): | ||
def get_num_devices(): | ||
for i in range(100): | ||
try: | ||
mx.nd.zeros((1,), ctx=mx.gpu(i)) | ||
except: | ||
return i | ||
# no need to use SyncBN with 1 gpu | ||
if get_num_devices() < 2: | ||
return | ||
ndev = 2 | ||
# check with unsync version | ||
for i in range(10): | ||
_check_batchnorm_result(mx.nd.random.uniform(shape=(4, 1, 4, 4)), | ||
num_devices=ndev, cuda=True) | ||
|
||
if __name__ == '__main__': | ||
import nose | ||
nose.runmodule() |
Oops, something went wrong.