Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
add numpy op bitwise_xor, hsplit, moveaxis, rot90
Browse files Browse the repository at this point in the history
add numpy op bitwise_xor

fix some format problems

add numpy op moveaxis

fix code style

add numpy op rot90

fix pylint error

updata rot90

address comments

add  numpy op hsplit

refactor split compute function
  • Loading branch information
gyshi committed Sep 24, 2019
1 parent 72b4d9b commit 1c57454
Show file tree
Hide file tree
Showing 12 changed files with 1,329 additions and 49 deletions.
47 changes: 47 additions & 0 deletions python/mxnet/_numpy_op_doc.py
Original file line number Diff line number Diff line change
Expand Up @@ -677,3 +677,50 @@ def _np_trace(a, offset=0, axis1=0, axis2=1, out=None):
(2, 3)
"""
pass


def moveaxis(a, source, destination):
"""Move axes of an array to new positions.
Other axes remain in their original order.
Parameters
----------
a : ndarray
The array whose axes should be reordered.
source : int or sequence of int
Original positions of the axes to move. These must be unique.
destination : int or sequence of int
Destination positions for each of the original axes. These must also be
unique.
Returns
-------
result : ndarray
Array with moved axes. This array is a view of the input array.
See Also
--------
transpose: Permute the dimensions of an array.
swapaxes: Interchange two axes of an array.
Examples
--------
>>> x = np.zeros((3, 4, 5))
>>> np.moveaxis(x, 0, -1).shape
(4, 5, 3)
>>> np.moveaxis(x, -1, 0).shape
(5, 3, 4)
These all achieve the same result:
>>> np.transpose(x).shape
(5, 4, 3)
>>> np.swapaxes(x, 0, -1).shape
(5, 4, 3)
>>> np.moveaxis(x, [0, 1], [-1, -2]).shape
(5, 4, 3)
>>> np.moveaxis(x, [0, 1, 2], [-1, -2, -3]).shape
(5, 4, 3)
"""
pass
169 changes: 165 additions & 4 deletions python/mxnet/ndarray/numpy/_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,10 +31,10 @@
'arctan2', 'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'log10', 'sqrt', 'cbrt', 'abs',
'absolute', 'exp', 'expm1', 'arcsin', 'arccos', 'arctan', 'sign', 'log', 'degrees', 'log2',
'log1p', 'rint', 'radians', 'reciprocal', 'square', 'negative', 'fix', 'ceil', 'floor',
'trunc', 'logical_not', 'arcsinh', 'arccosh', 'arctanh', 'tensordot',
'linspace', 'expand_dims', 'tile', 'arange', 'split', 'concatenate', 'stack', 'vstack', 'mean',
'maximum', 'minimum', 'swapaxes', 'clip', 'argmax', 'std', 'var', 'indices', 'copysign',
'ravel', 'hanning', 'hamming', 'blackman', 'flip', 'around', 'hypot', 'rad2deg', 'deg2rad']
'trunc', 'logical_not', 'arcsinh', 'arccosh', 'arctanh', 'tensordot', 'linspace', 'expand_dims',
'tile', 'arange', 'split', 'hsplit', 'concatenate', 'stack', 'vstack', 'mean', 'maximum',
'minimum', 'swapaxes', 'clip', 'argmax', 'std', 'var', 'indices', 'copysign', 'ravel',
'hanning', 'hamming', 'blackman', 'flip', 'around', 'hypot', 'rad2deg', 'deg2rad', 'rot90']


@set_module('mxnet.ndarray.numpy')
Expand Down Expand Up @@ -2012,6 +2012,121 @@ def split(ary, indices_or_sections, axis=0):
# pylint: enable=redefined-outer-name


# pylint: disable=redefined-outer-name
@set_module('mxnet.ndarray.numpy')
def hsplit(ary, indices_or_sections):
"""Split an array into multiple sub-arrays horizontally (column-wise).
This is equivalent to ``split`` with ``axis=0`` if ``ary`` has one
dimension, and otherwise that with ``axis=1``.
Parameters
----------
ary : ndarray
Array to be divided into sub-arrays.
indices_or_sections : int, list of ints or tuple of ints.
If `indices_or_sections` is an integer, N, the array will be divided
into N equal arrays along `axis`. If such a split is not possible,
an error is raised.
If `indices_or_sections` is a list of sorted integers, the entries
indicate where along `axis` the array is split.
If an index exceeds the dimension of the array along `axis`,
it will raises errors. so index must less than or euqal to
the dimension of the array along axis.
Returns
-------
sub-arrays : list of ndarrays
A list of sub-arrays.
Notes
------
- If `indices_or_sections` is given as an integer, but a split
does not result in equal division.It will raises ValueErrors.
- If indices_or_sections is an integer, and the number is 1, it will
raises an error. Because single output from split is not supported yet...
See Also
--------
split : Split an array into multiple sub-arrays of equal size.
Examples
--------
>>> x = np.arange(16.0).reshape(4, 4)
>>> x
array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.]])
>>> np.hsplit(x, 2)
[array([[ 0., 1.],
[ 4., 5.],
[ 8., 9.],
[12., 13.]]),
array([[ 2., 3.],
[ 6., 7.],
[10., 11.],
[14., 15.]])]
>>> np.hsplit(x, [3, 6])
[array([[ 0., 1., 2.],
[ 4., 5., 6.],
[ 8., 9., 10.],
[12., 13., 14.]]),
array([[ 3.],
[ 7.],
[11.],
[15.]]),
array([], shape=(4, 0), dtype=float32)]
With a higher dimensional array the split is still along the second axis.
>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
array([[[ 0., 1.],
[ 2., 3.]],
[[ 4., 5.],
[ 6., 7.]]])
>>> np.hsplit(x, 2)
[array([[[ 0., 1.]],
[[ 4., 5.]]]),
array([[[ 2., 3.]],
[[ 6., 7.]]])]
If ``ary`` has one dimension, 'axis' = 0.
>>> x = np.arange(4)
array([0., 1., 2., 3.])
>>> np.hsplit(x, 2)
[array([0., 1.]), array([2., 3.])]
If you want to produce an empty sub-array, you can see an example.
>>> np.hsplit(x, [2, 2])
[array([0., 1.]), array([], dtype=float32), array([2., 3.])]
"""
indices = []
axis = 1
if (len(ary.shape) == 1):
axis = 0
axis_size = ary.shape[axis]
if isinstance(indices_or_sections, int):
sections = indices_or_sections
if axis_size % sections:
raise ValueError('array hsplit does not result in an equal division')
section_size = int(axis_size / sections)
indices = [i * section_size for i in range(sections)]
elif isinstance(indices_or_sections, (list, set, tuple)):
indices = [0] + list(indices_or_sections)
else:
raise ValueError('indices_or_sections must either int or tuple of ints')
ret = _npi.hsplit(ary, indices, axis, False)
if not isinstance(ret, list):
raise NotImplementedError('single output from hsplit is not supported yet...')
return ret
# pylint: enable=redefined-outer-name


@set_module('mxnet.ndarray.numpy')
def concatenate(seq, axis=0, out=None):
"""Join a sequence of arrays along an existing axis.
Expand Down Expand Up @@ -3158,3 +3273,49 @@ def hypot(x1, x2, out=None):
[ 5., 5., 5.]])
"""
return _ufunc_helper(x1, x2, _npi.hypot, _np.hypot, _npi.hypot_scalar, None, out)


@set_module('mxnet.ndarray.numpy')
def rot90(m, k=1, axes=(0, 1)):
"""
Rotate an array by 90 degrees in the plane specified by axes.
Rotation direction is from the first towards the second axis.
Parameters
----------
m : ndarray
Array of two or more dimensions.
k : integer
Number of times the array is rotated by 90 degrees.
axes: (2,) array_like
The array is rotated in the plane defined by the axes.
Axes must be different.
Returns
-------
y : ndarray
A rotated view of `m`.
-----
rot90(m, k=1, axes=(1,0)) is the reverse of rot90(m, k=1, axes=(0,1))
rot90(m, k=1, axes=(1,0)) is equivalent to rot90(m, k=-1, axes=(0,1))
Examples
--------
>>> m = np.array([[1,2],[3,4]], 'int')
>>> m
array([[1, 2],
[3, 4]], dtype=int64)
>>> np.rot90(m)
array([[2, 4],
[1, 3]], dtype=int64)
>>> np.rot90(m, 2)
array([[4, 3],
[2, 1]], dtype=int64)
>>> m = np.arange(8).reshape((2,2,2))
>>> np.rot90(m, 1, (1,2))
array([[[1., 3.],
[0., 2.]],
[[5., 7.],
[4., 6.]]])
"""
return _npi.rot90(m, k=k, axes=axes)
Loading

0 comments on commit 1c57454

Please sign in to comment.