Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
add a compiler flag to use int64 as tensor size (#14570)
Browse files Browse the repository at this point in the history
* use a compile flag to use int64 tensor size

* use personal mshadow repo

* update data type

* update make config

* change size_t to index_t and add documentation

* update mshadow submodule to master

* fix compilation warning

* fix compiler warning

* fix compiler warning

* fix compiler warning

* fix compiler warning

* fix compiler error

* change nnvm::Tuple to mxnet::Tuple

* fix compiler warning

* fix compiler warning

* fix compiler warning

* fix compiler warning

* fix compiler warning

* fix lint

* update CI runtime_functons

* update runtime function

* correct runtime_functions

* udpate runtime functions

* add nightly test for large tensor

* update Jenkins files to test new compiler flag

* fix CI

* add runtime feature detect for the compiler flag

* change build from make to cmake

* fix CI

* move tests to nightly
  • Loading branch information
apeforest authored and eric-haibin-lin committed Apr 23, 2019
1 parent a1b0a3a commit 0f63659
Show file tree
Hide file tree
Showing 41 changed files with 282 additions and 97 deletions.
2 changes: 1 addition & 1 deletion 3rdparty/mshadow
8 changes: 8 additions & 0 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,7 @@ mxnet_option(USE_SIGNAL_HANDLER "Print stack traces on segfaults." OFF)
mxnet_option(USE_TENSORRT "Enable infeference optimization with TensorRT." OFF)
mxnet_option(USE_ASAN "Enable Clang/GCC ASAN sanitizers." OFF)
mxnet_option(ENABLE_TESTCOVERAGE "Enable compilation with test coverage metric output" OFF)
mxnet_option(USE_INT64_TENSOR_SIZE "Use int64_t to represent the total number of elements in a tensor" OFF)

message(STATUS "CMAKE_CROSSCOMPILING ${CMAKE_CROSSCOMPILING}")
message(STATUS "CMAKE_HOST_SYSTEM_PROCESSOR ${CMAKE_HOST_SYSTEM_PROCESSOR}")
Expand Down Expand Up @@ -295,6 +296,13 @@ else()
add_definitions(-DMXNET_USE_NCCL=0)
endif()

if (USE_INT64_TENSOR_SIZE)
message(STATUS "Using 64-bit integer for tensor size")
add_definitions(-DMSHADOW_INT64_TENSOR_SIZE=1)
else()
add_definitions(-DMSHADOW_INT64_TENSOR_SIZE=0)
endif()

include(cmake/ChooseBlas.cmake)
if(USE_CUDA AND FIRST_CUDA)
include(3rdparty/mshadow/cmake/Utils.cmake)
Expand Down
5 changes: 5 additions & 0 deletions Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -189,6 +189,11 @@ ifeq ($(USE_OPERATOR_TUNING), 1)
CFLAGS += -DMXNET_USE_OPERATOR_TUNING=1
endif

ifeq ($(USE_INT64_TENSOR_SIZE), 1)
CFLAGS += -DMSHADOW_INT64_TENSOR_SIZE=1
else
CFLAGS += -DMSHADOW_INT64_TENSOR_SIZE=0
endif
# verify existence of separate lapack library when using blas/openblas/atlas
# switch off lapack support in case it can't be found
# issue covered with this
Expand Down
54 changes: 54 additions & 0 deletions ci/docker/runtime_functions.sh
Original file line number Diff line number Diff line change
Expand Up @@ -755,6 +755,53 @@ build_ubuntu_gpu_cmake() {
ninja -v
}

build_ubuntu_cpu_large_tensor() {
set -ex
cd /work/build
build_ccache_wrappers
cmake \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CUDA_COMPILER_LAUNCHER=ccache \
-DUSE_SIGNAL_HANDLER=ON \
-DENABLE_TESTCOVERAGE=ON \
-DUSE_CUDA=OFF \
-DUSE_CUDNN=OFF \
-DUSE_MKLDNN=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DUSE_INT64_TENSOR_SIZE=ON \
-G Ninja \
/work/mxnet

ninja -v
}

build_ubuntu_gpu_large_tensor() {
set -ex
cd /work/build
build_ccache_wrappers
cmake \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CUDA_COMPILER_LAUNCHER=ccache \
-DUSE_SIGNAL_HANDLER=ON \
-DENABLE_TESTCOVERAGE=ON \
-DUSE_CUDA=ON \
-DUSE_CUDNN=ON \
-DUSE_MKL_IF_AVAILABLE=OFF \
-DUSE_MKLML_MKL=OFF \
-DUSE_MKLDNN=OFF \
-DUSE_DIST_KVSTORE=ON \
-DCMAKE_BUILD_TYPE=Release \
-DCUDA_ARCH_NAME=Manual \
-DCUDA_ARCH_BIN=$CI_CMAKE_CUDA_ARCH_BIN \
-DUSE_INT64_TENSOR_SIZE=ON \
-G Ninja \
/work/mxnet

ninja -v
}

build_ubuntu_blc() {
echo "pass"
}
Expand Down Expand Up @@ -1183,6 +1230,13 @@ nightly_test_KVStore_singleNode() {
python tests/nightly/test_kvstore.py
}

#Test Large Tensor Size
nightly_test_large_tensor() {
set -ex
export PYTHONPATH=./python/
nosetests-3.4 tests/nightly/test_large_array.py
}

#Tests Amalgamation Build with 5 different sets of flags
nightly_test_amalgamation() {
set -ex
Expand Down
28 changes: 28 additions & 0 deletions ci/jenkins/Jenkins_steps.groovy
Original file line number Diff line number Diff line change
Expand Up @@ -119,6 +119,34 @@ def compile_unix_openblas_debug_cpu() {
}]
}

def compile_unix_int64_cpu() {
return ['CPU: USE_INT64_TENSOR_SIZE': {
node(NODE_LINUX_CPU) {
ws('workspace/build-cpu-int64') {
timeout(time: max_time, unit: 'MINUTES') {
utils.init_git()
utils.docker_run('ubuntu_cpu', 'build_ubuntu_cpu_large_tensor', false)
utils.pack_lib('ubuntu_cpu_int64', mx_cmake_lib, true)
}
}
}
}]
}

def compile_unix_int64_gpu() {
return ['GPU: USE_INT64_TENSOR_SIZE': {
node(NODE_LINUX_GPU) {
ws('workspace/build-gpu-int64') {
timeout(time: max_time, unit: 'MINUTES') {
utils.init_git()
utils.docker_run('ubuntu_gpu', 'build_ubuntu_gpu_large_tensor', false)
utils.pack_lib('ubuntu_gpu_int64', mx_cmake_lib, true)
}
}
}
}]
}

def compile_unix_mkl_cpu() {
return ['CPU: MKL': {
node(NODE_LINUX_CPU) {
Expand Down
3 changes: 2 additions & 1 deletion ci/jenkins/Jenkinsfile_unix_cpu
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,8 @@ core_logic: {
custom_steps.compile_unix_openblas_debug_cpu(),
custom_steps.compile_unix_mkl_cpu(),
custom_steps.compile_unix_mkldnn_cpu(),
custom_steps.compile_unix_mkldnn_mkl_cpu()
custom_steps.compile_unix_mkldnn_mkl_cpu(),
custom_steps.compile_unix_int64_cpu()
])

utils.parallel_stage('Tests', [
Expand Down
1 change: 1 addition & 0 deletions ci/jenkins/Jenkinsfile_unix_gpu
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@ core_logic: {
custom_steps.compile_unix_cmake_mkldnn_gpu(),
custom_steps.compile_unix_cmake_gpu(),
custom_steps.compile_unix_tensorrt_gpu(),
custom_steps.compile_unix_int64_gpu()
])

utils.parallel_stage('Tests', [
Expand Down
6 changes: 5 additions & 1 deletion include/mxnet/libinfo.h
Original file line number Diff line number Diff line change
Expand Up @@ -123,7 +123,9 @@
#define MXNET_USE_SIGNAL_HANDLER 0
#endif


#ifndef MXNET_USE_INT64_TENSOR_SIZE
#define MXNET_USE_INT64_TENSOR_SIZE MSHADOW_INT64_TENSOR_SIZE
#endif

namespace mxnet {
namespace features {
Expand Down Expand Up @@ -177,6 +179,8 @@ enum : unsigned {
PROFILER,
DIST_KVSTORE,
CXX14,
INT64_TENSOR_SIZE,

// Signal handler to print stack traces on exceptions
SIGNAL_HANDLER,
DEBUG,
Expand Down
13 changes: 7 additions & 6 deletions include/mxnet/tensor_blob.h
Original file line number Diff line number Diff line change
Expand Up @@ -218,15 +218,16 @@ class TBlob {
return shape_.ndim();
}
/*!
* \brief return size of i-th dimension, start counting from highest dimension
* \brief return size of i-th dimension, start counting from highest dimension.
* return type needs to be a signed integer.
* \param idx the dimension count from the highest dimensin
* \return the size
* \return the size. -1 means unknown size to support zero-size tensor.
*/
inline index_t size(index_t idx) const {
return shape_[idx];
}
/*! \brief total number of elements in the tensor */
inline index_t Size(void) const {
inline size_t Size(void) const {
return shape_.Size();
}
/*! \brief get pointer in dtype */
Expand Down Expand Up @@ -443,7 +444,7 @@ class FieldEntry<mxnet::TShape>
throw dmlc::ParamError(os.str());
}
if (enforce_nonzero_) {
for (mxnet::index_t i = 0; i < v.ndim(); ++i) {
for (int i = 0; i < v.ndim(); ++i) {
if (v[i] == 0U) {
std::ostringstream os;
os << "value " << v << "for Parameter " << this->key_
Expand All @@ -457,7 +458,7 @@ class FieldEntry<mxnet::TShape>
this->enforce_nonzero_ = true;
return this->self();
}
inline FieldEntry<mxnet::TShape> &set_expect_ndim(mxnet::index_t ndim) {
inline FieldEntry<mxnet::TShape> &set_expect_ndim(int ndim) {
expect_ndim_ = ndim;
return this->self();
}
Expand All @@ -466,7 +467,7 @@ class FieldEntry<mxnet::TShape>
// whether all the entries need to be nonzero
bool enforce_nonzero_;
// expected number of dimension, default = 0 means no restriction.
mxnet::index_t expect_ndim_;
int expect_ndim_;
};

} // namespace parameter
Expand Down
16 changes: 8 additions & 8 deletions include/mxnet/tuple.h
Original file line number Diff line number Diff line change
Expand Up @@ -569,7 +569,7 @@ class TShape : public Tuple<dim_t> {
* \param axis_end The ending axis specified.
* \return the flat 3d shape
*/
inline mshadow::Shape<3> FlatTo3D(size_t axis_begin, size_t axis_end) const {
inline mshadow::Shape<3> FlatTo3D(int axis_begin, int axis_end) const {
CHECK(axis_end >= axis_begin);
mshadow::Shape<3> s;
CHECK(ndim_is_known(ndim())) << "shape must have a valid ndim";
Expand All @@ -579,10 +579,10 @@ class TShape : public Tuple<dim_t> {
s.shape_[1] = 1;
s.shape_[2] = 1;

for (size_t i = 0; i < axis_begin; ++i) {
for (int i = 0; i < axis_begin; ++i) {
s.shape_[0] *= d[i];
}
for (size_t i = axis_begin; i <= axis_end; ++i) {
for (int i = axis_begin; i <= axis_end; ++i) {
s.shape_[1] *= d[i];
}
for (int i = axis_end + 1; i < ndim(); ++i) {
Expand All @@ -595,7 +595,7 @@ class TShape : public Tuple<dim_t> {
* \param axis The axis specified.
* \return the flat 3d shape
*/
inline mshadow::Shape<3> FlatTo3D(size_t axis) const {
inline mshadow::Shape<3> FlatTo3D(int axis) const {
return FlatTo3D(axis, axis);
}
inline bool operator==(const TShape &s) const {
Expand Down Expand Up @@ -712,8 +712,8 @@ template<typename T>
struct hash<mxnet::Tuple<T> > {
/*! \brief hash a Tuple into unsigned int */
size_t operator()(const mxnet::Tuple<T>& val) const {
std::hash<uint32_t> hash_uint;
size_t res = hash_uint(val.ndim());
std::hash<int> hash_int;
size_t res = hash_int(val.ndim());
for (int i = 0; i < val.ndim(); ++i) {
res = dmlc::HashCombine(res, val[i]);
}
Expand All @@ -726,8 +726,8 @@ template<>
struct hash<mxnet::TShape> {
/*! \brief hash a TShape into unsigned int */
size_t operator()(const mxnet::TShape& val) const {
std::hash<uint32_t> hash_uint;
size_t res = hash_uint(val.ndim());
std::hash<int> hash_int;
size_t res = hash_int(val.ndim());
for (int i = 0; i < val.ndim(); ++i) {
res = dmlc::HashCombine(res, val[i]);
}
Expand Down
6 changes: 6 additions & 0 deletions make/config.mk
Original file line number Diff line number Diff line change
Expand Up @@ -215,6 +215,12 @@ EXTRA_OPERATORS =
# Create C++ interface package
USE_CPP_PACKAGE = 0

# Use int64_t type to represent the total number of elements in a tensor
# This will cause performance degradation reported in issue #14496
# Set to 1 for large tensor with tensor size greater than INT32_MAX i.e. 2147483647
# Note: the size of each dimension is still bounded by INT32_MAX
USE_INT64_TENSOR_SIZE = 0

#----------------------------
# plugins
#----------------------------
Expand Down
6 changes: 6 additions & 0 deletions make/crosscompile.jetson.mk
Original file line number Diff line number Diff line change
Expand Up @@ -192,6 +192,12 @@ EXTRA_OPERATORS =
# Create C++ interface package
USE_CPP_PACKAGE = 0

# Use int64_t type to represent the total number of elements in the tensor
# This will cause performance degradation reported in issue #14496
# Set to 1 for large tensor with tensor size greater than INT32_MAX i.e. 2147483647
# Note: the size of each dimension is still bounded by INT32_MAX
USE_INT64_TENSOR_SIZE = 0

#----------------------------
# plugins
#----------------------------
Expand Down
6 changes: 6 additions & 0 deletions make/osx.mk
Original file line number Diff line number Diff line change
Expand Up @@ -135,6 +135,12 @@ EXTRA_OPERATORS =
# Create C++ interface package
USE_CPP_PACKAGE = 0

# Use int64_t type to represent the total number of elements in a tensor
# This will cause performance degradation reported in issue #14496
# Set to 1 for large tensor with tensor size greater than INT32_MAX i.e. 2147483647
# Note: the size of each dimension is still bounded by INT32_MAX
USE_INT64_TENSOR_SIZE = 0

#----------------------------
# plugins
#----------------------------
Expand Down
12 changes: 6 additions & 6 deletions src/common/serialization.h
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ template<typename T>
inline size_t SerializedSize(const T &obj);

template<typename T>
inline size_t SerializedSize(const nnvm::Tuple <T> &obj);
inline size_t SerializedSize(const mxnet::Tuple <T> &obj);

template<typename K, typename V>
inline size_t SerializedSize(const std::map <K, V> &obj);
Expand All @@ -64,7 +64,7 @@ template<typename T>
inline void Serialize(const T &obj, char **buffer);

template<typename T>
inline void Serialize(const nnvm::Tuple <T> &obj, char **buffer);
inline void Serialize(const mxnet::Tuple <T> &obj, char **buffer);

template<typename K, typename V>
inline void Serialize(const std::map <K, V> &obj, char **buffer);
Expand All @@ -79,7 +79,7 @@ template<typename T>
inline void Deserialize(T *obj, const std::string &buffer, size_t *curr_pos);

template<typename T>
inline void Deserialize(nnvm::Tuple <T> *obj, const std::string &buffer, size_t *curr_pos);
inline void Deserialize(mxnet::Tuple <T> *obj, const std::string &buffer, size_t *curr_pos);

template<typename K, typename V>
inline void Deserialize(std::map <K, V> *obj, const std::string &buffer, size_t *curr_pos);
Expand All @@ -102,7 +102,7 @@ inline size_t SerializedSize(const T &obj) {
}

template<typename T>
inline size_t SerializedSize(const nnvm::Tuple <T> &obj) {
inline size_t SerializedSize(const mxnet::Tuple <T> &obj) {
if (is_container<T>::value) {
size_t sum_val = 4;
for (const auto& el : obj) {
Expand Down Expand Up @@ -180,7 +180,7 @@ inline void Serialize(const T &obj, char **buffer) {
}

template<typename T>
inline void Serialize(const nnvm::Tuple <T> &obj, char **buffer) {
inline void Serialize(const mxnet::Tuple <T> &obj, char **buffer) {
uint32_t size = obj.ndim();
std::memcpy(*buffer, &size, 4);
*buffer += 4;
Expand Down Expand Up @@ -244,7 +244,7 @@ inline void Deserialize(T *obj, const std::string &buffer, size_t *curr_pos) {
}

template<typename T>
inline void Deserialize(nnvm::Tuple <T> *obj, const std::string &buffer, size_t *curr_pos) {
inline void Deserialize(mxnet::Tuple <T> *obj, const std::string &buffer, size_t *curr_pos) {
uint32_t size = obj->ndim();
std::memcpy(&size, &buffer[*curr_pos], 4);
*curr_pos += 4;
Expand Down
8 changes: 4 additions & 4 deletions src/imperative/cached_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -36,8 +36,8 @@ struct CachedOpConfig : public dmlc::Parameter<CachedOpConfig> {
bool static_alloc;
bool static_shape;
bool is_dynamic;
nnvm::Tuple<uint32_t> data_indices;
nnvm::Tuple<uint32_t> param_indices;
mxnet::Tuple<uint32_t> data_indices;
mxnet::Tuple<uint32_t> param_indices;
std::string subgraph;
DMLC_DECLARE_PARAMETER(CachedOpConfig) {
DMLC_DECLARE_FIELD(static_alloc)
Expand All @@ -59,10 +59,10 @@ struct CachedOpConfig : public dmlc::Parameter<CachedOpConfig> {
.set_default(Imperative::BulkExecMaxNodeTrainBwd())
.describe("Segment size of bulk execution during backward pass.");
DMLC_DECLARE_FIELD(data_indices)
.set_default(nnvm::Tuple<uint32_t>())
.set_default(mxnet::Tuple<uint32_t>())
.describe("Position of argument variables.");
DMLC_DECLARE_FIELD(param_indices)
.set_default(nnvm::Tuple<uint32_t>())
.set_default(mxnet::Tuple<uint32_t>())
.describe("Position of parameters.");
DMLC_DECLARE_FIELD(subgraph)
.set_default(std::string(""))
Expand Down
Loading

0 comments on commit 0f63659

Please sign in to comment.