This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #271 from mli/master
[test] testcases for multi-devices
- Loading branch information
Showing
9 changed files
with
356 additions
and
73 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
# Test multi-devices and multi-machines | ||
|
||
must disable `CUDNN` | ||
|
||
`local_*` for multi-devices and single machine. | ||
|
||
`dist_*` for multi-machines |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
# pylint: skip-file | ||
""" common for multi-node | ||
- all iterators are disabled randomness | ||
""" | ||
import sys | ||
sys.path.insert(0, "../common/") | ||
sys.path.insert(0, "../../python/") | ||
import mxnet as mx | ||
import get_data | ||
import numpy as np | ||
import logging | ||
|
||
def mnist(batch_size, input_shape, num_parts=1, part_index=0): | ||
"""return mnist iters""" | ||
get_data.GetMNIST_ubyte() | ||
flat = len(input_shape)==1 | ||
train = mx.io.MNISTIter( | ||
image = "data/train-images-idx3-ubyte", | ||
label = "data/train-labels-idx1-ubyte", | ||
data_shape = input_shape, | ||
batch_size = batch_size, | ||
num_parts = num_parts, | ||
part_index = part_index, | ||
shuffle = False, | ||
flat = flat, | ||
silent = False) | ||
val = mx.io.MNISTIter( | ||
image = "data/t10k-images-idx3-ubyte", | ||
label = "data/t10k-labels-idx1-ubyte", | ||
data_shape = input_shape, | ||
batch_size = batch_size, | ||
shuffle = False, | ||
flat = flat, | ||
silent = False) | ||
return (train, val) | ||
|
||
def cifar10(batch_size, input_shape, num_parts=1, part_index=0): | ||
"""return cifar10 iterator""" | ||
get_data.GetCifar10() | ||
|
||
train = mx.io.ImageRecordIter( | ||
path_imgrec = "data/cifar/train.rec", | ||
mean_img = "data/cifar/cifar_mean.bin", | ||
data_shape = input_shape, | ||
batch_size = batch_size, | ||
rand_crop = False, | ||
rand_mirror = False, | ||
shuffle = False, | ||
round_batch = False, | ||
num_parts = num_parts, | ||
part_index = part_index) | ||
val = mx.io.ImageRecordIter( | ||
path_imgrec = "data/cifar/test.rec", | ||
mean_img = "data/cifar/cifar_mean.bin", | ||
rand_crop = False, | ||
rand_mirror = False, | ||
shuffle = False, | ||
round_batch = False, | ||
data_shape = (3,28,28), | ||
batch_size = batch_size) | ||
return (train, val) | ||
|
||
def accuracy(model, data): | ||
"""evaluate acc""" | ||
# predict | ||
data.reset() | ||
prob = model.predict(data) | ||
py = np.argmax(prob, axis=1) | ||
# get label | ||
data.reset() | ||
y = np.concatenate([label.asnumpy() for _, label in data]).astype('int') | ||
y = y[0:len(py)] | ||
acc = float(np.sum(py == y)) / len(y) | ||
logging.info('Accuracy = %f', acc) | ||
|
||
return acc |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
# pylint: skip-file | ||
""" data iterator for multi-node. | ||
all iterators are disabled randomness | ||
must create kv before | ||
""" | ||
import sys | ||
sys.path.insert(0, "../common/") | ||
sys.path.insert(0, "../../python/") | ||
import mxnet as mx | ||
import get_data | ||
|
||
def mnist(batch_size, input_shape, num_parts=1, part_index=0): | ||
"""return mnist iters""" | ||
get_data.GetMNIST_ubyte() | ||
flat = len(input_shape)==1 | ||
train = mx.io.MNISTIter( | ||
image = "data/train-images-idx3-ubyte", | ||
label = "data/train-labels-idx1-ubyte", | ||
data_shape = input_shape, | ||
batch_size = batch_size, | ||
num_parts = num_parts, | ||
part_index = part_index, | ||
shuffle = False, | ||
flat = flat, | ||
silent = False) | ||
val = mx.io.MNISTIter( | ||
image = "data/t10k-images-idx3-ubyte", | ||
label = "data/t10k-labels-idx1-ubyte", | ||
data_shape = input_shape, | ||
batch_size = batch_size, | ||
shuffle = False, | ||
flat = flat, | ||
silent = False) | ||
return (train, val) |
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,85 @@ | ||
#!/usr/bin/env python | ||
# pylint: skip-file | ||
import mxnet as mx | ||
from common import cifar10, accuracy | ||
import logging | ||
|
||
# symbol | ||
|
||
# Basic Conv + BN + ReLU factory | ||
def ConvFactory(data, num_filter, kernel, stride=(1,1), pad=(0, 0), act_type="relu"): | ||
conv = mx.symbol.Convolution(data=data, num_filter=num_filter, kernel=kernel, stride=stride, pad=pad) | ||
bn = mx.symbol.BatchNorm(data=conv) | ||
act = mx.symbol.Activation(data = bn, act_type=act_type) | ||
return act | ||
|
||
# A Simple Downsampling Factory | ||
def DownsampleFactory(data, ch_3x3): | ||
# conv 3x3 | ||
conv = ConvFactory(data=data, kernel=(3, 3), stride=(2, 2), num_filter=ch_3x3, pad=(1, 1)) | ||
# pool | ||
pool = mx.symbol.Pooling(data=data, kernel=(3, 3), stride=(2, 2), pool_type='max') | ||
# concat | ||
concat = mx.symbol.Concat(*[conv, pool]) | ||
return concat | ||
|
||
# A Simple module | ||
def SimpleFactory(data, ch_1x1, ch_3x3): | ||
# 1x1 | ||
conv1x1 = ConvFactory(data=data, kernel=(1, 1), pad=(0, 0), num_filter=ch_1x1) | ||
# 3x3 | ||
conv3x3 = ConvFactory(data=data, kernel=(3, 3), pad=(1, 1), num_filter=ch_3x3) | ||
#concat | ||
concat = mx.symbol.Concat(*[conv1x1, conv3x3]) | ||
return concat | ||
|
||
data = mx.symbol.Variable(name="data") | ||
conv1 = ConvFactory(data=data, kernel=(3,3), pad=(1,1), num_filter=96, act_type="relu") | ||
in3a = SimpleFactory(conv1, 32, 32) | ||
in3b = SimpleFactory(in3a, 32, 48) | ||
in3c = DownsampleFactory(in3b, 80) | ||
in4a = SimpleFactory(in3c, 112, 48) | ||
in4b = SimpleFactory(in4a, 96, 64) | ||
in4c = SimpleFactory(in4b, 80, 80) | ||
in4d = SimpleFactory(in4c, 48, 96) | ||
in4e = DownsampleFactory(in4d, 96) | ||
in5a = SimpleFactory(in4e, 176, 160) | ||
in5b = SimpleFactory(in5a, 176, 160) | ||
pool = mx.symbol.Pooling(data=in5b, pool_type="avg", kernel=(7,7), name="global_pool") | ||
flatten = mx.symbol.Flatten(data=pool, name="flatten1") | ||
fc = mx.symbol.FullyConnected(data=flatten, num_hidden=10, name="fc1") | ||
softmax = mx.symbol.Softmax(data=fc, name="loss") | ||
|
||
def test_inception(devs, kv_type): | ||
# guarantee the same weight init for each run | ||
mx.random.seed(0) | ||
logging.basicConfig(level=logging.DEBUG) | ||
|
||
(train, val) = cifar10(batch_size = 128, input_shape=(3,28,28)) | ||
|
||
model = mx.model.FeedForward.create( | ||
ctx = devs, | ||
symbol = softmax, | ||
X = train, | ||
kvstore = kv_type, | ||
eval_data = val, | ||
num_round = 1, | ||
learning_rate = 0.1, | ||
momentum = 0.9, | ||
wd = 0.00001, | ||
initializer = mx.init.Uniform(0.07)) | ||
|
||
return accuracy(model, val) | ||
|
||
if __name__ == "__main__": | ||
# base = test_inception(mx.gpu(), 'none') | ||
|
||
gpus = [mx.gpu(i) for i in range(2)] | ||
acc1 = test_inception(gpus, 'local_update_cpu') | ||
# acc2 = test_inception(gpus, 'local_allreduce_cpu') | ||
# acc3 = test_inception(gpus, 'local_allreduce_device') | ||
|
||
# assert base > 0.95 | ||
# assert abs(base - acc1) < 1e-3 | ||
# assert abs(base - acc2) < 1e-3 | ||
# assert abs(base - acc3) < 1e-3 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
#!/usr/bin/env python | ||
# pylint: skip-file | ||
import mxnet as mx | ||
from common import mnist, accuracy, cifar10 | ||
import logging | ||
|
||
## define lenet | ||
# input | ||
data = mx.symbol.Variable('data') | ||
# first conv | ||
conv1 = mx.symbol.Convolution(data=data, kernel=(5,5), num_filter=20) | ||
tanh1 = mx.symbol.Activation(data=conv1, act_type="tanh") | ||
pool1 = mx.symbol.Pooling(data=tanh1, pool_type="max", | ||
kernel=(2,2), stride=(2,2)) | ||
# second conv | ||
conv2 = mx.symbol.Convolution(data=pool1, kernel=(5,5), num_filter=50) | ||
tanh2 = mx.symbol.Activation(data=conv2, act_type="tanh") | ||
pool2 = mx.symbol.Pooling(data=tanh2, pool_type="max", | ||
kernel=(2,2), stride=(2,2)) | ||
# first fullc | ||
flatten = mx.symbol.Flatten(data=pool2) | ||
fc1 = mx.symbol.FullyConnected(data=flatten, num_hidden=500) | ||
tanh3 = mx.symbol.Activation(data=fc1, act_type="tanh") | ||
# second fullc | ||
fc2 = mx.symbol.FullyConnected(data=tanh3, num_hidden=10) | ||
# loss | ||
lenet = mx.symbol.Softmax(data=fc2) | ||
|
||
def test_lenet(devs, kv_type): | ||
# guarantee the same weight init for each run | ||
mx.random.seed(0) | ||
logging.basicConfig(level=logging.DEBUG) | ||
|
||
# (train, val) = cifar10(batch_size = 128, input_shape=(3,28,28)) | ||
(train, val) = mnist(batch_size = 100, input_shape=(1,28,28)) | ||
|
||
model = mx.model.FeedForward.create( | ||
ctx = devs, | ||
kvstore = kv_type, | ||
symbol = lenet, | ||
X = train, | ||
num_round = 3, | ||
learning_rate = 0.1, | ||
momentum = 0.9, | ||
wd = 0.00001) | ||
|
||
return accuracy(model, val) | ||
|
||
if __name__ == "__main__": | ||
gpus = [mx.gpu(i) for i in range(2)] | ||
|
||
base = test_lenet(mx.gpu(), 'none') | ||
acc1 = test_lenet(mx.gpu(), 'none') | ||
acc2 = test_lenet(gpus, 'local_update_cpu') | ||
acc3 = test_lenet(gpus, 'local_allreduce_cpu') | ||
acc4 = test_lenet(gpus, 'local_allreduce_device') | ||
|
||
assert base > 0.95 | ||
# assert base > 0.5 | ||
assert abs(base - acc1) < 1e-3 | ||
assert abs(base - acc2) < 1e-3 | ||
assert abs(base - acc3) < 1e-3 | ||
assert abs(base - acc4) < 1e-3 |
Oops, something went wrong.