Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(search): Add HNSW encoding index & insertion/deletion algorithm #2368

Merged
merged 18 commits into from
Jul 13, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
395 changes: 395 additions & 0 deletions src/search/hnsw_indexer.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,395 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*/

#pragma once

#include <algorithm>
#include <cmath>
#include <memory>
#include <random>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <queue>

#include "db_util.h"
#include "parse_util.h"
#include "search/indexer.h"
#include "search/search_encoding.h"
#include "storage/redis_metadata.h"
#include "storage/storage.h"


namespace redis {

struct VectorItem {
std::string key;
// TODO: use template based on VectorType
std::vector<double> vector;
HnswVectorFieldMetadata* metadata;

VectorItem(std::string_view key, std::string_view vector_str, HnswVectorFieldMetadata* metadata) : key(key), metadata(metadata) {
Decode(vector_str);
}

// TODO: move it to util
void Decode(std::string_view vector_str) {
std::string trimmed = std::string(vector_str);
trimmed.erase(0, 1); // remove the first '['
trimmed.erase(trimmed.size() - 1, 1); // remove the last ']'

std::istringstream iss(trimmed);
std::string num;

vector.clear();

while (std::getline(iss, num, ',')) {
try {
double value = std::stod(num);
vector.push_back(value);
} catch (const std::invalid_argument& ia) {
throw std::runtime_error("Invalid number in vector string: " + num);
}
}
}
git-hulk marked this conversation as resolved.
Show resolved Hide resolved
};

auto ComputeDistance(const VectorItem& left, const VectorItem& right) {
if (left.metadata->distance_metric != right.metadata->distance_metric)
// throw error
;

if (left.metadata->dim != right.metadata->dim)
// throw error
;

auto metric = left.metadata->distance_metric;
auto dim = left.metadata->dim;

switch (metric) {
case DistanceMetric::L2: {
double dist = 0.0;
for (auto i = 0; i < dim; i++) {
double diff = left.vector[i] - right.vector[i];
dist += diff * diff;
}
return std::sqrt(dist);
}
case DistanceMetric::IP: {
double dist = 0.0;
for (auto i = 0; i < dim; i++) {
dist += left.vector[i] * right.vector[i];
}
return -dist;
}
case DistanceMetric::COSINE: {
double dist = 0.0;
double norma = 0.0;
double normb = 0.0;
for (auto i = 0; i < dim; i++) {
dist += left.vector[i] * right.vector[i];
norma += left.vector[i] * right.vector[i];
normb += left.vector[i] * right.vector[i];
}
auto similarity = dist / std::sqrt(norma * normb);
return 1.0 - similarity;
}
default:
// throw error
git-hulk marked this conversation as resolved.
Show resolved Hide resolved
return 0.0;
}
}

bool operator<(const VectorItem& lhs, const VectorItem& rhs) {
if (lhs.key != rhs.key) {
return lhs.key < rhs.key;
}
if (!lhs.vector.empty() && !rhs.vector.empty()) {
return lhs.vector[0] < rhs.vector[0];
}
return false;
}

struct Node {
git-hulk marked this conversation as resolved.
Show resolved Hide resolved
using NodeKey = std::string;

NodeKey key;
uint16_t level;
PragmaTwice marked this conversation as resolved.
Show resolved Hide resolved
std::vector<NodeKey> neighbours;

Node(const NodeKey& key, uint16_t level) : key(key), level(level) {}

HnswNodeFieldMetadata DecodeNodeMetadata(const SearchKey& search_key, engine::Storage *storage) {
auto node_index_key = search_key.ConstructHnswNode(level, key);
std::string value;
rocksdb::Status s = storage->Get(rocksdb::ReadOptions(), node_index_key, &value);
HnswNodeFieldMetadata metadata;
Slice input(value);
s = metadata.Decode(&input);
return metadata;
}

void DecodeNeighbours(const SearchKey& search_key, engine::Storage *storage) {
auto edge_prefix = search_key.ConstructHnswEdgeWithSingleEnd(level, key);
util::UniqueIterator iter(storage, storage->DefaultScanOptions(), ColumnFamilyID::Search);
for (iter->Seek(edge_prefix); iter->Valid(); iter->Next()) {
if (!iter->key().starts_with(edge_prefix)) {
break;
}
auto neighbour_key = iter->key().ToString().substr(edge_prefix.size());
neighbours.push_back(neighbour_key);
}
}
};

class HnswIndex {
public:
using NodeKey = Node::NodeKey;

SearchKey search_key_;
HnswVectorFieldMetadata* metadata_;
std::mt19937 generator_;
double m_level_normalization_factor_;
engine::Storage *storage = nullptr;

HnswIndex(const SearchKey& search_key, HnswVectorFieldMetadata* vector, engine::Storage *storage)
: search_key_(search_key), metadata_(vector), storage(storage) {
m_level_normalization_factor_ = 1.0 / std::log(metadata_->m);
std::random_device rand_dev;
generator_ = std::mt19937(rand_dev());
}

int RandomizeLayer() {
std::uniform_real_distribution<double> level_dist(0.0, 1.0);
return static_cast<int>(std::floor(-std::log(level_dist(generator_)) * m_level_normalization_factor_));
}

NodeKey DefaultEntryPoint(uint16_t level) {
auto prefix = search_key_.ConstructHnswLevelNodePrefix(level);
util::UniqueIterator it(storage, storage->DefaultScanOptions(), ColumnFamilyID::Search);
it->Seek(prefix);

if (it->Valid() && it->key().starts_with(prefix)) {
Slice node_key_dst;
auto node_key = Slice(it->key().ToString().substr(prefix.size()));
if (!GetSizedString(&node_key, &node_key_dst)) {
// error handling
return "";
}
return node_key_dst.ToString();
}
return "";
}

void Connect(uint16_t layer, NodeKey node_key1, NodeKey node_key2,
ObserverOrUniquePtr<rocksdb::WriteBatchBase> &batch, rocksdb::ColumnFamilyHandle* cf_handle) {
auto edge_index_key1 = search_key_.ConstructHnswEdge(layer, node_key1, node_key2);
batch->Put(cf_handle, edge_index_key1, Slice());

auto edge_index_key2 = search_key_.ConstructHnswEdge(layer, node_key2, node_key1);
batch->Put(cf_handle, edge_index_key2, Slice());

Node node1 = Node(node_key1, layer);
HnswNodeFieldMetadata node1_metadata = node1.DecodeNodeMetadata(search_key_, storage);
node1_metadata.num_neighbours += 1;
std::string node1_updated_metadata;
node1_metadata.Encode(&node1_updated_metadata);
batch->Put(cf_handle, node_key1, node1_updated_metadata);

Node node2 = Node(node_key2, layer);
HnswNodeFieldMetadata node2_metadata = node2.DecodeNodeMetadata(search_key_, storage);
node2_metadata.num_neighbours += 1;
std::string node2_updated_metadata;
node2_metadata.Encode(&node2_updated_metadata);
batch->Put(cf_handle, node_key2, node2_updated_metadata);
}

void ResetEdges(const VectorItem& vec, const std::vector<VectorItem>& neighbour_vertors, uint16_t layer,
ObserverOrUniquePtr<rocksdb::WriteBatchBase> &batch, rocksdb::ColumnFamilyHandle* cf_handle) {
std::unordered_set<NodeKey> neighbours;
for (const auto& neighbour_vector : neighbour_vertors) {
neighbours.insert(neighbour_vector.key);
}

auto edge_prefix = search_key_.ConstructHnswEdgeWithSingleEnd(layer, vec.key);
util::UniqueIterator iter(storage, storage->DefaultScanOptions(), ColumnFamilyID::Search);
for (iter->Seek(edge_prefix); iter->Valid(); iter->Next()) {
if (!iter->key().starts_with(edge_prefix)) {
break;
}
auto neighbour_key = iter->key().ToString().substr(edge_prefix.size());

if (neighbours.count(neighbour_key) == 0) {
batch->Delete(cf_handle, iter->key());
}
}

Node node = Node(vec.key, layer);
HnswNodeFieldMetadata node_metadata = node.DecodeNodeMetadata(search_key_, storage);
node_metadata.num_neighbours = neighbours.size();
std::string node_updated_metadata;
node_metadata.Encode(&node_updated_metadata);
batch->Put(cf_handle, vec.key, node_updated_metadata);
}

std::vector<VectorItem> SelectNeighbors(const VectorItem& vec, const std::vector<VectorItem>& vertors, uint16_t layer) {
std::vector<std::pair<double, VectorItem>> distances;
distances.reserve(vertors.size());
for (const auto& candidate : vertors) {
distances.push_back( { ComputeDistance(vec, candidate), candidate } );
}

std::sort(distances.begin(), distances.end());
std::vector<VectorItem> selected_vs;

selected_vs.reserve(vertors.size());
uint16_t m_max = layer != 0 ? metadata_->m : 2 * metadata_->m;
for (auto i = 0; i < std::min(m_max, (uint16_t)distances.size()); i++) {
selected_vs.push_back(distances[i].second);
}
return selected_vs;
}

std::vector<VectorItem> SearchLayer(uint16_t level, const VectorItem& base_vector, uint32_t ef_runtime,
const std::vector<NodeKey>& entry_points) {
std::vector<VectorItem> candidates;
std::unordered_set<NodeKey> visited;
std::priority_queue<std::pair<double, VectorItem>, std::vector<std::pair<double, VectorItem>>, std::greater<>>
explore_heap;
std::priority_queue<std::pair<double, VectorItem>> result_heap;

for (const auto& entry_point_key : entry_points) {
Node entry_node = Node(entry_point_key, level);
HnswNodeFieldMetadata node_metadata = entry_node.DecodeNodeMetadata(search_key_, storage);
auto entry_point_vector = VectorItem(entry_point_key, node_metadata.vector, metadata_);
auto dist = ComputeDistance(base_vector, entry_point_vector);
explore_heap.push({dist, entry_point_vector});
result_heap.push({dist, entry_point_vector});
visited.insert(entry_point_key);
}

while (!explore_heap.empty()) {
auto [dist, current_vector] = explore_heap.top();
explore_heap.pop();
if (dist > result_heap.top().first) {
break;
}

auto node = Node(current_vector.key, level);
node.DecodeNeighbours(search_key_, storage);
for (const auto& neighbour_key : node.neighbours) {
if (visited.find(neighbour_key) != visited.end()) {
continue;
}
visited.insert(neighbour_key);
Node neighbour_node = Node(neighbour_key, level);
HnswNodeFieldMetadata neighbour_metadata = neighbour_node.DecodeNodeMetadata(search_key_, storage);
auto neighbour_node_vector = VectorItem(neighbour_key, neighbour_metadata.vector, metadata_);
auto dist = ComputeDistance(current_vector, neighbour_node_vector);
explore_heap.push({dist, neighbour_node_vector});
result_heap.push({dist, neighbour_node_vector});
while (result_heap.size() > ef_runtime) {
result_heap.pop();
}
}
}
while (!result_heap.empty()) {
candidates.push_back(result_heap.top().second);
result_heap.pop();
}
std::reverse(candidates.begin(), candidates.end());
return candidates;
}

void InsertVectorEntry(std::string_view key, std::string_view vector_str, ObserverOrUniquePtr<rocksdb::WriteBatchBase> &batch) {
auto cf_handle = storage->GetCFHandle(ColumnFamilyID::Search);
auto vector_item = VectorItem(key, vector_str, metadata_);
int target_level = RandomizeLayer();
std::vector<VectorItem> nearest_elements;

if (metadata_->num_levels != 0) {
auto level = metadata_->num_levels - 1;
std::vector<NodeKey> entry_points{DefaultEntryPoint(level)};

for (; level > target_level; level--) {
nearest_elements = SearchLayer(level, vector_item, metadata_->ef_runtime, entry_points);
entry_points = {nearest_elements[0].key};
}

for (; level >= 0; level--) {
nearest_elements = SearchLayer(level, vector_item, metadata_->ef_construction, entry_points);
auto connect_vec_items = SelectNeighbors(vector_item, nearest_elements, level);
for (const auto& connected_vec_item : connect_vec_items) {
Connect(level, vector_item.key, connected_vec_item.key, batch, cf_handle);
}

for (const auto& connected_vec_item : connect_vec_items) {
auto connected_node = Node(connected_vec_item.key, level);
auto connected_node_metadata = connected_node.DecodeNodeMetadata(search_key_, storage);
uint16_t connected_node_num_neighbours = connected_node_metadata.num_neighbours;
auto m_max = level == 0 ? 2 * metadata_->m : metadata_->m;

if (connected_node_num_neighbours <= m_max) {
continue;
}

connected_node.DecodeNeighbours(search_key_, storage);
std::vector<VectorItem> connected_node_neighbour_vec_items;
for (const auto& connected_node_neighbour_key : connected_node.neighbours) {
Node connected_node_neighbour = Node(connected_node_neighbour_key, level);
auto connected_node_neighbour_metadata = connected_node_neighbour.DecodeNodeMetadata(search_key_, storage);
auto neighbour_vector = VectorItem(connected_node_neighbour_key, connected_node_neighbour_metadata.vector, metadata_);
connected_node_neighbour_vec_items.push_back(neighbour_vector);
}
auto new_neighbors = SelectNeighbors(connected_vec_item, connected_node_neighbour_vec_items, level);
ResetEdges(connected_vec_item, new_neighbors, level, batch, cf_handle);
}

entry_points.clear();
for (const auto& new_entry_point : nearest_elements) {
entry_points.push_back(new_entry_point.key);
}
}
} else {
auto node_index_key = search_key_.ConstructHnswNode(0, key);
HnswNodeFieldMetadata node_metadata(0, vector_str);
std::string encoded_metadata;
node_metadata.Encode(&encoded_metadata);
batch->Put(cf_handle, node_index_key, encoded_metadata);
metadata_->num_levels = 1;
}

while (metadata_->num_levels - 1 < target_level) {
auto node_index_key = search_key_.ConstructHnswNode(metadata_->num_levels, key);
HnswNodeFieldMetadata node_metadata(0, vector_str);
std::string encoded_metadata;
node_metadata.Encode(&encoded_metadata);
batch->Put(cf_handle, node_index_key, encoded_metadata);
metadata_->num_levels++;
}

std::string encoded_index_metadata;
metadata_->Encode(&encoded_index_metadata);
auto index_meta_key = search_key_.ConstructFieldMeta();
batch->Put(cf_handle, index_meta_key, encoded_index_metadata);
}
};

} // namespace redis
Loading
Loading