-
Notifications
You must be signed in to change notification settings - Fork 3k
Closed as not planned
Labels
Description
When bucketing timestamp into 16 buckets, Iceberg throws an exception below:
import org.apache.iceberg.spark.IcebergSpark
import org.apache.spark.sql.types.DataTypes
IcebergSpark.registerBucketUDF(spark, "bucket", DataTypes.TimestampType, 16)
[info] org.apache.spark.SparkException: Job aborted due to stage failure: Task 10 in stage 11.0 failed 1 times, most recent failure: Lost task 10.0 in stage 11.0 (TID 428, 192.168.1.235, executor driver): org.apache.spark.SparkException: Failed to execute user defined function(UDFRegistration$$Lambda$4072/0x0000000801ba6588: (timestamp) => int)
[info] at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source)
[info] at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$.$anonfun$prepareShuffleDependency$3(ShuffleExchangeExec.scala:248)
[info] at scala.collection.Iterator$$anon$10.next(Iterator.scala:461)
[info] at scala.collection.Iterator$$anon$10.next(Iterator.scala:461)
[info] at org.apache.spark.util.random.SamplingUtils$.reservoirSampleAndCount(SamplingUtils.scala:42)
[info] at org.apache.spark.RangePartitioner$.$anonfun$sketch$1(Partitioner.scala:306)
[info] at org.apache.spark.RangePartitioner$.$anonfun$sketch$1$adapted(Partitioner.scala:304)
[info] at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsWithIndex$2(RDD.scala:889)
[info] at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsWithIndex$2$adapted(RDD.scala:889)
[info] at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
[info] at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349)
[info] at org.apache.spark.rdd.RDD.iterator(RDD.scala:313)
[info] at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
[info] at org.apache.spark.scheduler.Task.run(Task.scala:127)
[info] at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:446)
[info] at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1377)
[info] at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:449)
[info] at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1130)
[info] at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:630)
[info] at java.base/java.lang.Thread.run(Thread.java:832)
[info] Caused by: java.lang.ClassCastException: class java.sql.Timestamp cannot be cast to class java.lang.Long (java.sql.Timestamp is in module java.sql of loader 'platform'; java.lang.Long is in module java.base of loader 'bootstrap')
[info] at org.apache.iceberg.transforms.Bucket$BucketLong.apply(Bucket.java:177)
[info] at org.apache.spark.sql.UDFRegistration.$anonfun$register$283(UDFRegistration.scala:747)
[info] ... 20 more
[info]
[info] Driver stacktrace:
[info] at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2059)
[info] at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2008)
[info] at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2007)
[info] at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
[info] at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
[info] at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
[info] at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2007)
[info] at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:973)
[info] at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:973)
[info] at scala.Option.foreach(Option.scala:407)
[info] ...
[info] Cause: org.apache.spark.SparkException: Failed to execute user defined function(UDFRegistration$$Lambda$4072/0x0000000801ba6588: (timestamp) => int)
[info] at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source)
[info] at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$.$anonfun$prepareShuffleDependency$3(ShuffleExchangeExec.scala:248)
[info] at scala.collection.Iterator$$anon$10.next(Iterator.scala:461)
[info] at scala.collection.Iterator$$anon$10.next(Iterator.scala:461)
[info] at org.apache.spark.util.random.SamplingUtils$.reservoirSampleAndCount(SamplingUtils.scala:42)
[info] at org.apache.spark.RangePartitioner$.$anonfun$sketch$1(Partitioner.scala:306)
[info] at org.apache.spark.RangePartitioner$.$anonfun$sketch$1$adapted(Partitioner.scala:304)
[info] at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsWithIndex$2(RDD.scala:889)
[info] at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsWithIndex$2$adapted(RDD.scala:889)
[info] at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
[info] ...
[info] Cause: java.lang.ClassCastException: class java.sql.Timestamp cannot be cast to class java.lang.Long (java.sql.Timestamp is in module java.sql of loader 'platform'; java.lang.Long is in module java.base of loader 'bootstrap')
[info] at org.apache.iceberg.transforms.Bucket$BucketLong.apply(Bucket.java:177)
[info] at org.apache.spark.sql.UDFRegistration.$anonfun$register$283(UDFRegistration.scala:747)
[info] at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source)
[info] at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec$.$anonfun$prepareShuffleDependency$3(ShuffleExchangeExec.scala:248)
[info] at scala.collection.Iterator$$anon$10.next(Iterator.scala:461)
[info] at scala.collection.Iterator$$anon$10.next(Iterator.scala:461)
[info] at org.apache.spark.util.random.SamplingUtils$.reservoirSampleAndCount(SamplingUtils.scala:42)
[info] at org.apache.spark.RangePartitioner$.$anonfun$sketch$1(Partitioner.scala:306)
[info] at org.apache.spark.RangePartitioner$.$anonfun$sketch$1$adapted(Partitioner.scala:304)
[info] at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsWithIndex$2(RDD.scala:889)
Spark 3.0.1
Iceberg 0.11.1
SreeramGarlapati